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ABSTRACT 
 
In recent years, as a result of a growing concern about the effects of climate 
change, the decarbonization of the electric power generation sector has been 
promoted. As a result, generation technologies based on renewable resources, 
mainly wind and solar, have undergone a strong development that has led them, 
today, to be considered mature generation technologies in a position to compete 
with traditional generation sources in the electricity markets. Thus, these 
technologies have achieved significant quotas of presence in the generation mix 
of many countries, which together with its inherent variability, poses a serious 
challenge in terms of guaranteeing the reliability and safety of the electrical 
system. 
This integration of renewable generators in the electrical systems of many 
countries has evolved from both the technical and the market points of view. 
Thus, in the technical aspect, specific regulations to increase the requirements of 
telemetry and remote control and to regulate the behavior of wind and solar 
generators concerning voltage regulation have been developed by the system 
operator to guarantee the reliability and safety of the system. Regarding the 
integration of this type of generators in the electricity market, the most usual 
trend was to allow them to deliver all the generated energy at a price that would 
allow them to offset the high original costs. Recently, progress is being made 
towards an effective participation in the electricity markets and there are 
currently countries that already allow these generators to participate even in the 
adjustment markets and ancillary services. 
In this environment, the focus of this thesis is on the integration of a renewable 
generator in the electricity market. Specifically, in the problem faced by an 
operator of a wind farm when deciding how to participate in it. The main 
characteristic of this decision-making problem has its origin in the structure of the 
electricity market in which a large part of the decisions to be made by the operator 
of a generation plant have to be made in advance with respect to the moment of 
effective participation in the market. Thus, the decision-making problem should 
take into account the uncertainty associated with important parameters such as 
energy prices or the availability of the renewable resource. 
At the same time, the field of applied mathematics driven by the extraordinary 
advances in computing capacity available and easily accessible, puts at the 
disposal of engineering a wide range of tools that can not be wasted. In particular, 
this thesis aims to apply two areas of applied mathematics to very specific 
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problems. Thus, on the one hand, the decision-making problem is modeled as an 
optimization problem under uncertainty. More specifically, a stochastic approach 
will be applied to deal with the uncertainty associated with certain parameters of 
the problem such as wind resource availability or energy prices. This stochastic 
approach will require defining a set of scenarios, with an associated probability of 
ocurrence, that represent possible realizations of the parameters affected by the 
uncertainty. 
On another hand, a data-driven approach is used to define these scenarios, that 
is, information will be extracted from the available data. To carry out this task, 
machine learning tools, both supervised and unsupervised, are proposed. 
In this thesis, the Iberian electricity market (Spain and Portugal) will be used as 
the inspiration for the proposed models. Chapter 2 presents a conceptual 
description of the said market with the sole objective of contextualizing the 
problems that will be developed in later chapters. In addition, in chapter 3, the 
mathematical tools that will be used throughout the thesis are described, both in 
terms of optimization problems and data analysis tools. The goal is to make this 
document as self-contained as possible. In Chapters 4, 5, and 6 different cases of 
a wind farm with storage that participates in different markets, both energy and 
regulation, are dealt with. Finally, in chapter 7 some relevant conclusions are 
drawn and future lines of work are established. 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 
RESUMEN 
 
En los últimos años, como consecuencia de una preocupación creciente por los 
efectos del cambio climático, se ha promovido la descarbonización del sector de 
la generación de energía eléctrica. Como resultado, las tecnologías de generación 
basadas en fuentes renovables, principalmente eólica y solar, han experimentado 
un fuerte desarrollo que las ha llevado, a día de hoy, a ser consideradas 
tecnologías de generación maduras en disposición de competir con las fuentes de 
generación tradicionales en los mercados eléctricos. Así, estas tecnologías han 
conseguido importantes cuotas de presencia en el mix de generación de muchos 
países, lo que unido a su inherente variabilidad constituye un serio reto en lo que 
se refiere a garantizar la fiabilidad y seguridad del sistema eléctrico. 
Esta integración de generadores renovables en los sistemas eléctricos de muchos 
países ha ido evolucionando tanto desde el punto de vista técnico como desde el 
de mercado. Así, en el aspecto técnico, se ha desarrollado, por parte del operador 
del sistema, reglamentación específica para aumentar las exigencias de 
telemedida y telecontrol o para regular el comportamiento de generadores 
eólicos y solares frente a huecos de tensión, con el fin de garantizar la fiabilidad y 
seguridad del sistema. En cuanto a la integración de este tipo de generadores en 
el mercado eléctrico, en un principio la tendencia más habitual era permitir que 
éstos entregasen toda la energía generada a un precio que les permitiese 
compensar los elevados costes de inversión. Posteriormente, se avanzó hacia una 
participación más efectiva en los mercados de electricidad y, actualmente, hay 
países que ya permiten que estos generadores participen, incluso, en los 
mercados de ajuste y servicios auxiliares. 
En este entorno, el foco de esta tesis se pone en la integración de un generador 
renovable en el mercado eléctrico. En concreto, en el problema que afronta un 
operador de un parque eólico, a la hora de decidir cómo participar en el mismo. 
La característica principal de este problema de toma de decisiones tiene su origen 
en la estructura del mercado eléctrico en el que buena parte de las decisiones a 
tomar por el operador de una planta de generación tienen que ser tomadas con 
antelación respecto al momento de participación efectiva en el mercado. Así, el 
problema de toma de decisiones ha de plantearse teniendo en cuenta la 
incertidumbre asociada a parámetros importantes del mismo como pueden ser 
los precios de la energia o la disponibilidad del propio recurso renovable. 



xii    Resumen 

 

Por otro lado, el campo de las matemáticas aplicadas traccionada por los avances 
extraordinarios en la capacidad de computación disponible y fácilmente accesible, 
pone a disposición de la ingeniería una amplia oferta de herramientas que no 
pueden ser desperdiciadas. En particular, en esta tesis se plantea unir dos áreas 
de la matemática aplicada y aplicarlos a un problema muy concreto. Así, por un 
lado se plantea el modelo de toma de decisiones como un problema de 
optimización bajo incertidumbre. Más concretamente, se aplicará un enfoque 
estocástico para tratar la incertidumbre asociada a ciertos parámetros del 
problema como disponibilidad de recurso eólico o precios de la energía. Este 
enfoque estocástico exigirá definir un conjunto de escenarios, con una 
probabilidad asociada, que representen realizaciones posibles de los parámetros 
afectados por la incertidumbre.  
Para definir estos escenarios se utilizará un enfoque basado en datos, es decir, se 
extraerá información de los datos disponibles. Para llevar a cabo esta tarea, se 
plantea la utilización de herramientas de aprendizaje automático tanto 
supervisado como no supervisado. 
En esta tesis, se utilizará el mercado eléctrico ibérico (España y Portugal) como 
inspirador de los modelos planteados. En el capítulo 2 se presenta una descripción 
conceptual de dicho mercado con el único objetivo de contextualizar los 
problemas que se desarrollarán en capítulos posteriores. Por un lado se describen 
los mercados de energía, gestionados por el polo español del MIBEL y en los que 
se negocian la mayoría de los intercambios de energia que se producen. Ejemplos 
de estos mercados de energía son el mercado diario y las diferentes sesiones del 
mercado intradiario. Por otra parte se describen los mercados de ajuste, 
gestionados por los operadores del sistema español y portugués, y que tienen por 
finalidad el garantizar que la operación del sistema se realice de forma segura y 
eficiente. Por último, se describe en detalle el mercado de balance, el cual tiene 
una gran importancia en el caso de los generadores basados en energías 
renovables. En este mercado, los generadores compran y/o venden energía para 
compensar sus desvíos con respecto a los compromisos adquiridos en los 
mercados de energía. 
En el capítulo 3, se describen las herramientas matemáticas que se utilizarán a lo 
largo de la tesis con el objetivo de hacer este documento lo más auto-contenido 
posible. Se presenta, por un lado, el concepto de optimización matemática como 
marco idóneo en el que plantear problemas de toma de decisiones. A partir del 
planteamiento general de un problema de optimizatión se presentan las 
estructuras del problema más habituales. Así se introducen los conceptos, por 
ejemplo, de programación lineal, convexa y no lineal. Además, se presentan dos 
enfoques para tratar problemas de optimización bajo incertidumbre, estocástico 
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y robusto. En este tipo de problemas bajo incertidumbre, los datos de entrada a 
los mismos no son conocidos con exactitud. En particular, en esta tesis, se plantea 
un enfoque estocástico para incorporar la incertidumbre asociada a ciertos 
parámetros de los problemas considerados en la toma de decisiones. Bajo este 
enfoque, la incertidumbre se modela definiendo una serie de escenarios posibles 
de realización del paramétro afectado por la incertidumbre y asignándole a cada 
uno de esos escenarios una probabilidad de ocurrencia. Por otro lado, en este 
mismo capítulo, se hace una introducción a las técnicas de aprendizaje 
automático supervisado y no supervisado que se utilizarán en esta tesis. En 
concreto, estas técnicas se utilizarán para analizar datos históricos disponibles y 
extraer de ellos tanta información como sea posible para definir los escenarios y 
su probabilidad asociada que serán utilizados para resolver los problemas 
planteados. Por un lado, y dentro de las técnicas de aprendizaje no supervisado, 
se presenta el concepto de clustering. El objetivo del clustering es el de agrupar 
los puntos que forman parte del conjunto de datos dado en un cierto número de 
clusters. Se busca así representar un conjunto de datos original con una serie de 
puntos representativos del mismo. Por otro lado, y dentro de las técnicas de 
aprendizaje supervisado, se presenta el concepto de redes neuronales y, más en 
particular, una especialización de las mismas, denominadas redes neuronales 
recurrentes, para extraer información de conjunto de datos que forman parte de 
una secuencia. 
Los capítulos 4, 5 y 6 plantean diferentes casos de un parque eólico con 
almacenamiento que participa en diferentes mercados, tanto de energía como de 
regulación y consituyen el núcleo de esta tesis. En estos tres capítulos, el parque 
eólico considerado es el parque eólico experimental de Sotavento, ubicado en 
Galicia, en el noroeste de España, y que amablamente ha proporcionado datos 
reales relativos a las predicciones de generación y a la generación en tiempo real 
del mismo. Además, los datos relativos a parámetros del mercado eléctrico, tanto 
precios como requisitos de regulación se han descargado de la página web de Red 
Eléctrica de España (www.esios.ree.es), en dónde se encuentran a disposición de 
cualquiera que quiera consultarlos. 
En primer lugar, en el capítulo 4 se considera que el parque eólico con 
almacenamiento participa en el mercado diario, en el mercado de regulación 
secundaria y en el mercado de balance. El objetivo de este capítulo es el de 
desarrollar un modelo determinístico del problema y utilizar dicho modelo para 
evaluar el coste de no disponer de información exacta cuando se resuelve el 
problema. El modelo planteado es un problema de optimización convexo con 
variables binarias y los datos de entrada afectados por la incertidumbre son los 
precios en los tres mercados considerados, la energía eólica disponible y los 

http://www.esios.ree.es/
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requerimientos de regulación en tiempo real que serán exigidos por el operador 
del sistema. El planteamiento para evaluar el coste de la incertidumbre consiste 
en resolver el problema con unos datos de entrada fácilmente extraíbles de los 
datos disponibles y comparar el resultado obtenido con el que se obtendría en el 
utópico caso de haber conocido esos datos con exactitud. Así, por ejemplo, los 
datos de precios se calcularán como una media horaria de los precios de la última 
semana y los datos de energía eólica disponible son datos de previsión reales 
proporcionados por el propio operador del parque eólico de Sotavento. En el caso 
de la cantidad de regulación exigida por el operador del sistema se consideran 
varios casos. Por un lado, se analizan los requisitos más habituales extraídos de 
los datos históricos disponibles y, por otro lado, se considera una generación 
aleatoria de estos requisitos de regulación. Se lleva a cabo una simulación de los 
ingresos netos que obtendría el parque eólico durante un año en los casos reales 
propuestos y se comparan con los ingresos que se obtendrían si la información 
disponible fuese perfecta. Se observa que la influencia de la incertidumbre en la 
energía eólica disponible y en los requisitos de regulación del operador del 
sistema es similar y representa entre un 2% y un 4% de los ingresos obtenidos en 
el caso de información perfecta dependiendo del sistema de almacenamiento 
considerado. Por el contrario, la influencia de la incertidumbre en los precios es 
pequeña en comparación con las otras dos fuentes de incertidumbre. Durante la 
simulación también se concluye que la presencia de almacenamiento añade poco 
valor si sólo se participa en el mercado diario mientras que proporciona un 
aumento considerable de los ingresos netos si se considera también la 
participación en el mercado de regulación secundaria. 
Una vez evaluado el coste de la incertidumbre en el problema, en el capítulo 5 se 
plantea incorporar la incertidumbre en la energía eólica disponible y en los 
requisitos de regulación exigidos por el operador del sistema  al problema de toma 
de decisiones. Para ello, y tomando como base el modelo determinístico 
desarrollado en el capítulo anterior, se propone un enfoque estocástico. Bajo este 
enfoque, los parámetros afectados por la incertidumbre se modelan como un 
conjunto de escenarios posibles a los que se le asigna una determinada 
probabilidad de ocurrencia. Más específicamente, se plantea un modelo 
estocástico en dos etapas. El objetivo de este modelo es el de optimizar las 
decisiones tomadas en la primera etapa, que serán las que serán implementadas, 
pero teniendo en cuenta las posibles realizaciones de la incertidumbre y sus 
efectos en las variables de la segunda etapa. Una vez planteado el problema de 
toma de decisiones como un problema de optimización estocástico en dos etapas, 
se plantean una serie de hipótesis para definir escenarios. Por un lado, los 
escenarios que modelan la incertidumbre asociada a la disponibilidad del recurso 
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eólico se definen a partir de predicciones reales disponibles por el operador del 
parque eólico de Sotavento. En lo relativo a los requisitos de regulación se 
plantean diferentes posibilidades. En primer lugar, se utilizan redes neuronales 
para llevar a cabo una predicción de dichos requisitos en función de los datos ya 
conocidos de los días precedentes. Por otro lado, se realiza un clustering 
unidimensional de los datos históricos de un año y se plantean dos hipótesis para 
definir escenarios para un día completo. Un enfoque diferente es realizar un 
clustering multidimensional sobre el histórico de datos diarios. El último enfoque 
considerado consiste en tomar como escenarios los datos conocidos de los 
últimos días. Para evaluar todas las posibilidades planteadas se simula durante 
dos meses los ingresos netos obtenidos en cada una de ellas y se comparar con 
los que se obtendrían en el caso de información perfecta. La conclusion más 
importante es que el clustering multidimensional consigue reducir de una manera 
significativa el coste de la incertidumbre asociada a los requerimientos de 
regulación. 
En el capítulo 6, se considera que el parque eólico con almacenamiento participa 
únicamente en el mercado diario, intradiario y de balance. En este caso, se tiene 
en cuenta la incertidumbre asociada a los precios de la energía en todos los 
mercados y a la disponibilidad del recurso eólico. El planteamiento para definir 
escenarios que modelen la incertidumbre asociada a esta última es análogo al 
empleado en el capítulo 5. Por el contrario, para modelar la incertidumbre 
asociada a los precios en los diferentes mercados se plantea un enfoque 
totalmente basado en técnicas de aprendizaje automático. Se comparan en este 
capítulo dos propuestas para definir escenarios. Por un lado, un clustering 
multidimensional que defina patrones de precios diarios englobando a todos los 
mercados. A su vez, y teniendo en cuenta el número de datos diarios asignados a 
cada cluster se define una probabilidad desde un punto de vista frecuentista de 
cada uno de esos patrones. Por otro lado, y utilizando los mismos patrones 
definidos en el clustering, se extrae información de la secuencia temporal de 
ocurrencia de esos patrones. Así, mediante el uso de una red neuronal recurrente 
basada en celdas del tipo LSTM, se realiza una predicción de con qué probabilidad 
puede ocurrir cada uno de los patrones definidos en función de los datos más 
recientes de precios disponibles. Los modelos planteados se comparan entre sí y 
contra la situación de información perfecta y se concluye que el segundo enfoque 
obtiene mejores resultados comparados con el enfoque frecuentista, lo que 
parece razonable al extraer información no sólo de los precios si no también de la 
secuencia diaria de éstos. 
Por último, en el capítulo 7 se extraen algunas conclusiones relevantes y se 
establecen futuras líneas de trabajo. En particular, se concluye que la utilización 
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de un enfoque estocástico basado en datos es adecuado para tratar problemas 
en los que existe incertidumbre asociada a los datos de entrada y cuyo proceso 
de decisión se repite de una manera continuada. En esta tesis, las simulaciones se 
realizaron para un mínimo de dos meses. Por otro lado, la utilización de técnicas 
de aprendizaje autómático y, en especial, combinando técnicas de aprendizaje 
supervisado y no supervisado se presenta como un enfoque interesante para 
extraer información de los datos disponibles. En cuanto a las líneas de trabajo 
futuras se plantea, por un lado, desarrollar modelos de decisión multietapa que 
se ajusten a la estructura de toma de decisiones en el mercado eléctrico. Por otro 
lado, parece interesante seguir explorando técnicas de aprendizaje automático 
que sean capaces de extraer información de los datos disponibles, suministrando 
así valiosa información de entrada al problema.  
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CHAPTER 1 
 

1 Introduction 
 
 
 
In this chapter, the motivation of this research is exposed. A research statement is 
exposed in order to define the interest of the proposed research problem and the 
approaches followed to handle it. At the end of the chapter, the main contributions 
of this thesis are highlighted and a list of the work published as a result of this 
research is provided. 
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Figure 1.- Generation mix in Spain 

1.1 Motivation  
 
In recent years, as a result of a growing concern about the effects of climate 
change, the decarbonization of the electric power generation sector has been 
promoted. As a result, generation technologies based on renewable resources, 
mainly wind and solar, have undergone a strong development that has led them, 
today, to be considered mature generation technologies in a position to compete 
with the traditional generation sources in the electricity sector. Thus, these 
technologies have achieved important quotas of presence in the generation mix 
of many countries. As an example, the generation mix of Spain is shown in Figure 
1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The share of renewable generation in the capacity mix is expected to continue to 
increase in several countries, which poses new challenges to effectively integrate 
them in both the power system and the electricity market. On one hand, from the 
power system point of view, that integration deals with keeping the system 
running in a safe and reliable way. On another hand, from an electricity market 
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point of view, it is necessary to develop market mechanisms that take into account 
the characteristics of renewable generation. 
Moreover, new agents in the power system are expected to become relevant in 
the near future such as electric vehicles, prosumers, storage systems, active 
distribution networks operators, and probably others that we can not even 
imagine at present. An illustration of the coming power system is shown in Figure 
2. 

.  
 

Figure 2.- Power system of the future. Source: International Energy Association. 
 
As a consequence, the power system will become a game field with a huge 
number of participants seeking at achieving their own objectives where massive 
amounts of data will be also available to help these participants to decide how to 
interact with each other. 
In this context, the motivation of this thesis is to propose and explore data-driven 
decision-making frameworks that can be used, eventually, by agents taking part 
of the challenging power system of the near future.  
 

1.2 Research statement 
 
Power systems are becoming more and more complex with many agents aiming 
at achieving their own goals while interacting with each other in an intensive data 
environment. 
In this context, power systems are also experiencing a strong concurrence among 
agents wishing to sell/buy energy, power, and services in the electricity markets. 
Thus, there is an actual need to develop decision-making tools that can help 
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Figure 3.- Wind and storage power plant 

agents to make optimal decisions as to how to participate in those markets. One 
important feature of these decision-making problems is that decisions have to be 
made in an uncertain environment, i.e., the input data is not known when the 
problem is to be solved.  
A renewable energy-based generator will be considered in this thesis. In 
particular, a wind farm is proposed due to the important presence of this kind of 
renewable generators in the generation mix of many countries. Moreover, energy 
storage technologies are seen as a key technology to facilitate the massive 
integration of renewable energy systems in the power systems by increasing the 
power system flexibility and adaptability to fluctuations of renewable energy 
generation. This need is thus pushing the technological development of more and 
more competitive electrical storage systems. The possibility of adding storage 
capacity to the wind farm is also worth studying in order to evaluate the benefits 
of increasing  the manageability of the wind generation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, the research problem to be handled in this thesis deals with the proposal of 
decision-making frameworks for a wind and storage power plant, as shown in 
Figure 3, participating in the electricity market. This decision-making problem 
occurs in an uncertain environment. In this particular case, uncertainty concerns, 
for example, the availability of wind energy and the market prices. In Figure 4, a 
one-week long forecast of available wind energy is shown. In this figure, the red 
line shows the actual value of available wind energy with respect to the interval 
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 Figure 4.- Available wind energy forecast 

 Figure 5.- Day-ahead market prices 

forecast. It can be seen how the uncertainty increase with the time span of the 
forecast. On another hand, in Figure 5, the volatility of energy prices in the day-
ahead market is shown.  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To tackle this problem, this thesis proposes to apply mathematical tools to build 
a decision-making framework under uncertainty. More specifically, stochastic 
programming is proposed to model the uncertainty in the decision-making 
problem while several machine learning techniques are leveraged to supply 
meaningful data to the decision-making problem. 
Thus, the first objective of the thesis is to develop optimization models in an 
environment of uncertainty in order to decide the operational strategy of a wind 
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Figure 6.- Experimental wind park of Sotavento 

farm in the electricity markets and assess the suitability of having storage 
capacity. 
The second objective is to propose and validate strategies for the use of available 
data that can provide meaningful input data to the optimization models 
developed. In particular, machine learning techniques will be used, both 
supervised and unsupervised. 
Real world data is used throughout the thesis. In the one hand, market data is 
downloaded from the site of Red Eléctrica de España [1], where a vast amount of 
data concerning prices and other parameters of the Spanish electricity system and 
market are publicly available. On another hand, an experimental wind farm 
located in Northwestern Spain [2] has kindly provided us with real data concerning 
wind energy availability. A picture of the experimental wind farm is shown in 
Figure 6. The availability of real-world data is used throughout the thesis twofold: 
firstly, as a source of historical data from where extract information on how to 
model uncertainty, and secondly to evaluate the quality of the proposed methods 
to handle such uncertainty. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This research has been raised at the intersection between very broad fields: 
electricity markets, optimization under uncertainty, and machine learning 
techniques as shown in Figure 7. 
The approach of the thesis is to pool these three areas to generate decision-
making frameworks based on mathematical models of optimization that together 
with data analysis strategies, are useful to decide the operation of a generator 
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Figure 7.- Areas of knowledge relevant for this thesis 

based on renewable energy and equipped with storage that participates in one or 
more of the available electricity markets. This decision-making problem is strongly 
affected by uncertainty which should be included in the modeling of the problem. 
Machine learning techniques are leveraged in order to extract as much 
information as possible out of the available data and provide the decision models 
with valuable information concerning the uncertain parameters. 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 

1.3 Contributions 
 
At the higher level, this thesis shows the effectiveness of leveraging machine 
learning techniques to extract information out of available data that can be used 
in decision-making models under uncertainty, in particular, for a wind and storage 
power plant participating in several electricity markets. More specifically, the 
most important contributions of this thesis are the following: 
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 Development of a deterministic optimization model to evaluate the cost of 
the uncertainty concerning the available wind energy and the parameters of 
the electricity market in the decision-making problem of a wind and storage 
power plant that participates in the day-ahead, balancing, and reserve 
markets. 

 Development of a two-stage stochastic model of the wind storage power 
plant participating in the day-ahead, balancing, and reserve markets. 

 Development of a two-stage stochastic model of the wind and storage power 
plant participating in the pool market, i.e., day-ahead, intraday, and balancing 
markets. 

 Proposal of unsupervised machine learning techniques, specifically 
monovariate and multivariate clustering, to analyze historical data of the 
requirements of participation in the reserve market by the system operator. 

 Development of a framework combining multivariate clustering and recurrent 
neural networks to generate scenarios modeling the uncertainty associated 
with pool prices. 

 Evaluation of the proposed strategies through simulation and comparison 
with the ideal case of perfect information. 
 

1.4 Thesis Outline 
 
The rest of this thesis is organized as follows.  
 

 CHAPTER 2. In this chapter, the Iberian electricity market is described in 
detail in order to understand the models that are proposed in this thesis. 
Both electricity and adjustment services markets are explained. The 
balancing market is given a special attention because of its relevancy 
when dealing with renewable-based generators. 
 

 CHAPTER 3. In order to make this work as self-contained as possible, a 
basic introduction to mathematical tools that will be used in the next 
chapters is given. In one hand, the concept of an optimization problem, 
from a mathematical point of view, is presented. An optimization 
framework is used in the next chapters to model several decision-making 
problems of a W&SPP participating in electricity markets. On another 
hand, some machine learning techniques are presented. In particular, 
clustering and neural networks. A data-driven approach is followed to 
generate meaningful input data to the optimization problems, and the 
presented machine learning techniques are used to extract information 
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out of available data. Moreover, a short review of the applications of 
optimization theory to kind of problems arising in the power systems is 
also presented in this chapter.  

 

 CHAPTER 4. A deterministic model of a wind-storage power plant is 
developed in this chapter. This model is used to evaluate the cost of 
uncertain parameters when the wind-storage power plant takes part in 
both day-ahead and reserve markets. Uncertainty in available wind 
energy, regulation requirements, and energy and power prices is 
considered. 
 

 CHAPTER 5. The decision-making problem under uncertainty, both in 
available wind energy and regulation requirements, of a W&SPP 
participating in day-ahead, and regulation markets, is modeled by a two-
stage stochastic problem. Several approaches are proposed and 
evaluated to generate meaningful scenarios modeling the uncertainty.  
 

 CHAPTER 6. The participation of the wind and storage power plant 
participating in the pool market, i.e., in day-ahead, intraday, and 
balancing markets, is modeled as a two-stage stochastic problem. 
Uncertainty in both available wind energy and market prices is 
considered. A hybrid approach, using clustering to define price patterns 
and recurrent neural networks to extract information from the temporal 
sequence of such patterns, is proposed to generate scenarios for day-
ahead, intraday, and balancing market prices.  

  

 CHAPTER 7. In the last chapter, a set of conclusions and future work 
directions are discussed. 

 

1.5 List of publications 
 
As a result of this research work, several papers were published in scientific 
journals and international conferences.  
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CHAPTER 2 
 
 

2 Overview of electricity 
markets. 

 
 
 
 
 
 
 
The goal of this chapter is to make it clear the structure of the market associated 
with the power systems in a liberalized environment. The Iberian peninsula case, 
comprising Spain and Portugal, is chosen as a reference and presented in detail. A 
special consideration is given to the so-called balancing market because of its 
important influence in the operation of renewable energy based generators. 
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2.1 Introduction 
 
An electrical system can be viewed as a set of agents that interact in an organized 
manner. The ultimate goal of the system is that the power generators supply the 
electric power demand of the consumers in an efficient, reliable, and safe 
manner. Thus, in an electrical system, it is necessary to define a set of activities 
and services to be carried out by different agents. 
The main activities within an electrical system are the following: generation, 
transport, distribution, and commercialization. Traditionally, these activities have 
been vertically integrated and under the responsibility of a single operator, 
resulting in a monopolistic regime. When in some countries it is decided to 
liberalize the electricity sector, it is necessary to define who and how each of the 
aforementioned activities will be carried out. The most usual approach has been 
to liberalize generation and commercialization activities, while transport and 
distribution have remained as regulated activities. 
In a liberalized framework, it becomes important to define which agents perform 
the regulated and unregulated activities and how each of them will be rewarded 
for the services rendered to the system. This is how the concept of the electricity 
market appears in the context of a liberalized electric system. 
Below, a flavor of the operation of the Iberian electricity market is given in order 
to provide the necessary background to understand the models developed in 
chapters 4, 5, and 6. 
 

2.2 Iberian electricity market 
 
Since 1998, the year in which the Spanish and Portuguese governments began 
talks and studies to progressively eliminate the barriers and promote the 
development of the Iberian Electricity Market, there have been a series of events 
that, gradually, have been laying the foundations of the construction and 
development of what can now be called the Iberian Electricity Market. As a result, 
the Iberian Electricity Market (MIBEL) was created and it is working since July 1st, 
2007. 
Under the MIBEL a bunch of several markets is run [3]. These markets are 
operated by several entities as shown in Figure 8. In the one hand, the electricity 
markets are operated by the Spanish and Portuguese market operators, OMIE and 
OMIP respectively. The first one, the Spanish pole, is in charge of the day-ahead 
and the intraday markets which will be presented shortly. In another hand, the 
adjustment services markets are operated by the Portuguese (REN) and the 
Spanish (REE) system operators.  
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Figure 8.- MIBEL and market operators 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, the Iberian market can be split into two main markets: an electricity market 
where most of the energy exchanges among generators and consumers are 
traded and a sequence of activities, most of them remunerated under market 
mechanisms, aimed at keeping the whole power system operating efficiently and 
safely. 
Around both, market and system operators, a bunch of agents plays their role in 
the whole system as it is shown in Figure 9. On the one hand, the generation 
companies (GENCO) provides energy that can be sold either through the market 
operator or through bilateral contracts with large consumers. The GENCOs are 
also an important player in the ancillary services market which aims at keeping 
the power system operating in a reliable and safe way as it will be explained 
shortly. It is to note that with the ongoing increase on the presence of distributed 
generation technologies, an equivalent role may be played by aggregators of 
distributed generation assets. On another hand, large consumers and retailers 
buy huge amounts of energy to be consumed by themselves or sold to end-users 
respectively. Large consumers also can participate in the ancillary services market. 
End users are also becoming generators which can consume their own generated 
electricity. A growing interaction of this self-consumption agents with the system 
is expected and thus, likely by aggregating agents, the participation in ancillary 
services would become also possible. 
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Figure 9.- Power market agents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A qualitative introduction to these markets is presented in the rest of this chapter. 
At first, the pool market is described as that market where most of the energy is 
traded. Afterward, the adjustment services markets are described and lastly, the 
balancing market is presented in detail. A chart showing this markets and their 
temporal sequence is represented in Figure 11. 
 

2.2.1 Pool Market 
 
The pool market includes the day-ahead market, the intraday markets, and the 
balancing market [4]. The day-ahead market is the main electricity contracting 
market in the Iberian Peninsula and works 365 days a year. As in the rest of the 
European Union, it is a marginal market in which the price and the volume of 
hiring in each hour are established from the point of equilibrium between supply 
and demand. Every day, until 12:00 a.m., electricity purchase and sale offers are 
received for the following day. These offers are then processed with an algorithm 
called EUPHEMIA [5] , which is used in most of the European countries. Once the 
process is over, OMIE communicates publicly the prices and energy that will be 
produced and purchased in each of the hours of the next day in the Iberian 
market. 
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Once the day-ahead market has been cleared, the adjustment markets (also called 
intraday markets) are carried out, allowing buyers and sellers to make offers to 
buy and sell electric power to adjust their programs based on their best forecasts 
of what will happen in real time. The market operator is also in charge of managing 
the bilateral contracts between generators and large consumers. 
 

2.2.2 Adjustment services market 
 
In order to guarantee a reliable and safe operation of the power system, the 
system operator (SO) is entrusted to manage the so-called adjustment services 
which include: management of technical constraints and ancillary services [6].  
The provision of these services is awarded through an adjustment services 
market. The system operator is in charge of managing and liquidating said 
markets. Although these adjustment services are essential to guarantee the safety 
and quality of supply, their influence on the cost of electricity supply is very limited 
as shown in Figure 10 [7]. The operation of the adjustment services markets is 
described in detail in reference [8].  
 

 Solution of technical constraints 
 
The process of solving technical constraints aims at guaranteeing that the energy 
exchanges resulting from the electricity market can be undertaken under safe and 
reliable conditions. This process is executed once the sessions of the day-ahead 
market and each of the intraday market sessions have been closed. In addition, 
existing bilateral contracts and forecasted international exchanges that have been 
communicated to the system operator are also taken into account. In addition, 
prior to the solution of the technical constraints, the generation plants have had 
to submit to the system operator their offers to participate in this service, i.e., 
their offers to increase or decrease their generation and/or consumption in order 
to solve the technical constraints as to the SO requirements. With all this 
information, the process consists of two well-differentiated phases. In the first 
phase, the generation plants are rescheduled based on different scenarios that 
contemplate different contingencies that would affect the operation of the 
system. In this phase, the redispatches up, i.e, requiring more energy, are settled 
based on the specific offer submitted by the generators, while the redispatches 
down are settled based on the daily market price. In the second phase, new 
reprogramming is carried out in order to balance the global generation and 
demand programs. In this phase, an order of merit is followed between the offers 
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Figure 10.- Influence of adjustment services on energy price.  

submitted to upload and download. The settlements are made based on the 
specific offers to upload and download. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As a result of this process of solution of technical constraints, a provisional feasible 
program (PFP) is obtained. In this program, a set of agents and their respective 
amount of energy to be supplied/consumed in each hour of day D is established. 
From this PFP a set of markets is defined to guarantee a safe and reliable 
operation of the system when approaching real time. 
 

 Ancillary services 
 
Ancillary services are necessary to ensure the safety, quality and, reliability of 
electricity supply. There are several kinds of ancillary services as follows:  
 

 Frequency regulation. 
 

First of all, there exist ancillary services aimed at keeping the frequency of the 
system in the allowed threshold. These services are thus called frequency 
regulation services. Within this service, several levels of regulation are defined: 
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primary, secondary, and tertiary regulation. The primary regulation automatically 
corrects instantaneous imbalances between generation and demand. It is 
provided by the speed regulators of the generators themselves and their time 
horizon is 30 seconds. This service is mandatory for all generators although it is 
not rewarded. Secondary regulation also aims at guaranteing the generation-
demand balance but, in this case, the time horizon extends from 30 seconds to 15 
minutes. This service is awarded through competitive mechanisms between the 
generators willing to offer it and consists of two concepts: availability (regulation 
band) and utilization (energy). Thus, each generator offers a quantity of power 
that will be available to the system operator to be used eventually. A regulation 
band is assigned to each generator with minimum cost criteria. As a result of this 
procedure, a marginal price of the regulation band is established for each hour. 
Generators with regulation band allocation will have to provide the energy that 
the system operator may require in real time. This energy is valued at the marginal 
price of the tertiary regulation energy. 
Finally, among the services linked to frequency regulation, tertiary regulation is 
defined. The objective of this regulation is to restore the secondary regulation 
availability. Thus, it is defined as the maximum variation of power that a generator 
can provide in 15 minutes and be maintained for at least 2 hours. It is a mandatory 
offer service and, if necessary, it is assigned based on the offers received, with the 
price of the service being fixed by the last offer assigned in each direction, up and 
down, in each hour. 
 

 Deviations management. 
 
Another complementary service is linked to the management of deviations. This 
service aims at providing the system operator with flexibility to resolve 
generation-demand imbalances without putting the availability of secondary and 
tertiary regulation reserves at risk. Thus, this deviation management market will 
be executed in the case that expected imbalances are important. 
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Figure 11.- Sequence of markets operated by SO and MO 
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 Voltage regulation. 
 

Voltage in the nodes of the transport network is another important parameter 
within the electrical system. This voltage must be maintained within the 
appropriate limits to guarantee that the supply is carried out in the required 
safety, reliability and quality conditions. Certain generators, transport companies, 
and certain consumers can provide this complementary voltage regulation 
service. 
 

 Blackstart capabilities. 
 
Finally, there is a complementary service linked to the ability of certain generators 
to replenish the supply in the event of a national or regional disturbance. These 
generators must be able to start without external power supply after a zero of 
general voltage and keep generating in a stable manner throughout the process 
of replacement of the service.  
 

2.2.3 Balancing market 
 
In the Spanish case, there exists one more mechanism to deal with the variability 
of renewable resources generators. This mechanism aims at setting a price, which 
may constitute a penalty or not, to the excess or lack of delivered energy with 
respect to the programmed energy in every hour for a given agent. Although this 
mechanism is referred to as balancing market, it is not an actual market. Instead, 
the prices of the deviations are calculated from the prices of energy in other 
markets as it will be explained shortly.  
Due to the importance of this mechanism in the integration of renewable energy 
resources in the electrical system, it is explained in detail. A full description may 
be found in [9]. 
Firstly, the deviations incurred by a renewable energy generator have to be 
defined. Thus, the programmed energy for a given generator in each hour of day 
D depends on the commitments acquired in the day-ahead market, on the 
updatings made by the agent in the corresponding intraday market session, and 
on the adjustments made by the system operator in the real-time constraints 
market. By adding up all these three components, a certain amount of energy is 
programmed for that generator in a given hour. Had the generator fail to follow 
the programmed energy, it would be incurring in a deviation which will be handled 
by the balancing market. 
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A deviation is considered positive when either the agent is producing more energy 
or consuming less energy than programmed. Conversely, a deviation is considered 
negative when either the agent is producing less energy or consuming more 
energy than programmed. Thus, the deviation in which an agent incurs in every 
hour is referred to as agent deviation (AD) and, is defined as to equation (1). 
 

_ _ _h h hAgent Deviation Delivered Energy Programmed Energy    (1) 

 
As it was explained before, the system operator run a set of markets in order to 
guarantee the stability of the system. All these markets aim at matching the 
unbalances between generation and demand in every moment. The net amount 
of energy that the systems needs for balance purposes in every hour (NABE) is 
defined as to equation (2) 
 

, ,

,

_ _ _ _h h m d

m d

Net Amount Balance Energy Balance Energy   (2) 

 
In the equation (2), subindex m stands for the considered market, i.e, either 
secondary or tertiary regulation or deviations market. On another hand, subindex 
d stands for the direction of the regulation, either upwards or downwards, that is 
needed. The balance energy (BE) is the amount of energy required for regulation 
in a given hour, in a given market and in a given direction, i.e, upwards or 
downwards. It is important to highlight that the regulation requirements may be 
demanded in fractions of an hour so it is possible to have, in the same hour, 
periods (minutes) when energy for regulation upwards is needed and periods 
when regulation downwards is required. Thus, the NABE represents the 
aggregated needs of regulation requirements in a given hour in the considered 
markets. 
In order to define the prices of the deviation that will be applied to the power 
agent in each hour, both magnitudes, NABE and AD need to be compared as 
represented in Figure 12, i.e., actual deviation of the considered agent and actual 
balancing needs of the system has to be compared. 
Thus, when the deviation of the agent is favorable to the balance needs of the 
whole system, the price of the deviation will be that of the day-ahead market, i.e, 
no penalty is applying. This is the case, for example, when the agent is deviating 
upwards, for example by producing more energy than programmed, and the 
system is needing extra energy for regulation. In this case, the agent will be paid 
at the same price as if it would have committed that excess of energy in the DAM. 
A similar case arises when the agent is deviating downwards, for example by 
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Figure 12.- Prices in the balancing market 

producing less energy than programmed, and the system is needing to reduce 
energy for regulation. In this case, the agent just needs to buy energy at the DAM 
price, which is equivalent to return the money it got in the DAM back. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
On another hand, it may happen that the agent and the system do not match their 
deviation and regulation needs respectively. In this case, the deviation of the 
agent needs to be compensated. Thus, the SO needs to use regulation capabilities 
from the ancillary services markets. The cost of using these regulation capabilities 
should be taken into account to calculate the deviation price to be faced by the 
agent.  
The equations (3) and, (4) define the deviation prices, both upwards and 
downwards, that apply to the deviations with respect to the programmed energy 
when the deviation and the systems needs are opposite. 
In case the agent is deviating upwards and the system needs to reduce energy, 
the SO will need to increase the requirements of regulation downwards. The SO 
may get this regulation from the frequency regulation markets, both secondary 
and tertiary, and/or from the deviations market. The deviation price applied to 
the agent takes into account the weighted average price of the regulation costs 
and cannot be smaller than the DAM price as stated in the equation (3). 
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Analogously, if the agent is deviating downwards and the system needs regulation 
upwards, the SO will need to increase the requirements for regulation upwards. 
In this case, the price applied to the deviation will be the weighted average of the 
regulation upwards prices. The deviation down price is defined with a max 
function in order to avoid that it may be lower than the DAM price as to equation 
(4). 
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2.3 Conclusions 
 
The structure of the Iberian electricity market was presented in this chapter. The 
market is split into two groups of submarkets, i.e., electricity or pool market, 
which operates under the control of a market operator, and an .adjustment 
market running under control of a system operator. In the first market, the 
majority of energy is traded while in the second one a set of services are traded 
in order to guarantee a reliable and safe operation of the system. The balancing 
market is also presented in detail. This market plays an important role in the case 
of renewable energy generators and consequently will also play an important role 
in the rest of this thesis. 
 
 
 
 



 

 
 
 

 

CHAPTER  3 
 

3 Mathematical Background 
 
 

 
 
 
 
 
In order to make this thesis as self-contained as possible, this chapter sets the 
mathematical background to follow the rest of the chapters. It aims at introducing 
some basic concepts to those not familiar with mathematical programming and 
machine learning concepts. In the first place, some introductory knowledge of 
mathematical optimization is exposed in order to develop an intuition on how to 
translate a decision-making problem into mathematical terms. Moreover, two 
approaches are presented to introduce uncertainty in the decision-making 
problem: stochastic and robust approaches. Lastly, several machine learning 
techniques are described.  
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3.1 Introduction 
 
A decision-making problem is often modeled as an optimization problem where 
the best decision among a set of feasible or possible ones is to be identified. This 
problem comprises two equally important aspects. In one hand, the optimization 
problem itself and, on another hand, the input data to that optimization problem. 
In this chapter, the mathematical background needed to understand the basic 
concepts used in this thesis to handle both, optimization problem formulation and 
input data definition, is presented. Thus, in section 3.2 an optimization problem, 
from a mathematical point of view, is defined. An optimization framework is 
chosen for the rest of this thesis to model the decision-making problems we will 
be dealing with. In this section, the structure of an optimization problem and the 
importance of that structure in the tractability of the problem is highlighted. 
Moreover, the concept of optimization under uncertainty, which will play a crucial 
role in the rest of the thesis, is also introduced.  
For the second task, a data-driven approach is proposed. Thus, in section 3.3, 
several machine learning techniques, both supervised and unsupervised, are 
presented. These tools aim at extracting as much information as possible out of 
the available data in order to feed to the optimization problem input data as 
meaningful as possible. 
 

3.2 Optimization.  
 
A decision-making problem can be written as a mathematical optimization 
problem. In this section, firstly, a few definitions concerning the concept of a 
mathematical optimization problem are exposed. Secondly, some approaches to 
model the uncertainty in the optimization problem are presented. 
 

3.2.1 Definition 
 
An optimization problem aims at finding the best solution among a set of feasible 
ones. Thus, this problem can be expressed mathematically as to equation (5) as 
follows: 
 

 
0( )

1,....,i i

minimize f x

subject to f x b i m 
     (5) 

 



Mathematical backgroud   25 

 

Where the variable 
nx   is called the decision or optimization variable. While 

the functions 
0, if f  are real and defined in n .  The function 

0f  is called the 

objective function and the functions 
if  define the so-called constraints of the 

problem. 

A vector * nx  is called optimal, or solution of the problem, if it has the smallest 

objective value among all vectors satisfying the constraints as defined in the 
equation (6) as follows:  
 

*

1 1 0 0, ( ) ,......, ( ) ( ) ( )n

m mz f z b f z b f z f x        (6) 

 
Depending on the characteristics of the objective function and constraints, 
several classes of optimization problems may be defined. The structure of the 
problem is of paramount importance when dealing with the tractability and 
solvability of the problem. Thus, for example, if the condition (7) holds for all 
functions involved, objective and constraints, the resulting problem is called a 
linear problem. 
 

( ) ( ) ( ) , , ,n

i i if x y f x f y x y              (7) 

 
In this case, a linear problem can be expressed as follows: 
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minimize c x

subject to a x b j m
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    (8) 

 

Being 
ix the i-th component of the vector 

nx and, ic , ,j ia , jb  . 

A linear program can be also expressed in matrix form resulting in a more compact 
notation as follows: 
 

Tminimize c x

subject to Ax b
       (9) 

 

Where nc , mb and, m nA  . 
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Figure 13.- Example of convex functions. Representation of the convexity condition. 

Linear programs have been studied for a long time. As a result, algorithms to solve 
linear programs, such as simplex or interior point based methods, have reached a 
remarkable mature status. Currently, linear programs of several millions of 
variables and constraints can be solved in a reasonable amount of time on a 
personal computer. 
Analogously, a convex optimization problem is defined if all the functions involved 
in the problem are convex [10]. A function is convex if the condition (10) holds, 
which can be interpreted as a relaxation of the linearity condition. 
 

( ) ( ) ( ) , , ,

, 0 1

n

i i if x y f x f y x y

and

     

   

      

  
  (10) 

 
As it happens for linear programs, a local optimum of a convex problem is 
guaranteed to be also a global optimum. 

An example of a real convex function in 
2

and the explanation of the convexity 

condition in a real function in are shown in Figure 13. 

Although the maturity of convex problems solvers is not as remarkable as that of 
linear programs, an acceptable level of performance can be achieved for certain 
structures of convex problems, such as those with conic or semidefinite 
constraints [10]. In those cases, problem sizes of hundreds of thousands of 
variables and constraints may be tractable. 
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Traditionally, when either the objective function or some of the constraints are 
nonlinear, the problem is referred to as a nonlinear problem. In this case, with the 
aforementioned exceptions of certain types of convex problems, there are not 
effective ways to solve these problems in a general way [11]. This kind of problems 
use to be handled by heuristic techniques and problem-customized methods. 
It is also possible, and interesting, to define optimization problems where some 
variables are discrete, for example, binary or integer variables. This kind of 
variables have a great interest from a modeling point of view in many real-world 
applications of optimization theory. An optimization problem with some of the 
variables being discrete is referred to as a Mixed Integer Problem.  
If a linear program is generalized to include discrete variables, the resulting 
problem is called a Mixed Integer Linear Program. Although there exist solvers 
able to handle these problems efficiently, the tractable sizes are considerably 
reduced with respect to the continuous linear situation. 
In the case of Mixed Integer Nonlinear problems, the addition of discrete variables 
puts additional complexity onto the nonlinear program making quite challenging 
to solve them. 
 

3.2.2  Optimization under uncertainty 
 
Decision-making processes are inherently made under uncertain conditions. 
Moreover, we claimed that most of decision-making problems may be 
represented as mathematical optimization problems. Thus, it looks plausible that 
approaches to handle uncertainty in the decision process be considered which we 
have not done so far. 
Without loss of generality, and for sake of simplicity, a decision-making problem 
that can be modeled as a linear problem is considered as being affected by 
uncertainty. All the concepts and ideas presented in this subsection are 
straightforwardly generalized to nonlinear programs. Thus, let’s consider the 
linear program written in matrix form as an equation (9). In this problem, vectors 
c and b, and matrix A are the input data. If the input data is perfectly known, the 
optimization problem is deterministic and solving the problem guarantees to have 
the best possible action. On another hand, it may happen, and actually often does, 
that the input data is not certainly known. Two approaches are presented to 
handle this uncertainty: stochastic and robust approaches. 
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 Stochastic programming 
 
A first approach to deal with uncertainty in the input data is to assume that the 
input data is describable through probability distributions. This approach has been 
deeply treated in the literature. In this section, we aimed at introducing the basic 
concepts of stochastic programming that are used in coming chapters. All the 
concepts in this section can be found in [12], [13], and [14]. These references can 
be also used for further reading and deeper understanding of stochastic 
optimization. 
Given the probability distribution of the uncertain input data, a straightforward 
approach is to calculate the expected value of the uncertain parameters and solve 
the resulting deterministic equivalent problem.  
A more interesting approach is to represent the uncertain input data as a set of 
scenarios with an associated probability of occurrence. Thus, a stochastic 
optimization problem can be formulated which takes into account what may 
happen in every scenario weighted by the corresponding probability of 
occurrence. As a result, the solution of the problem is the best action taken into 
account the possible realizations of the uncertain input data. Depending on the 
number of considered scenarios, the size of the problem may become very large. 
This issue will lead to important subjects on the stochastic programming theory 
as scenario reduction techniques or decomposition techniques to solve huge 
problems. These questions are out of the scope of this introductory section but it 
is interesting to build the intuition on the size issues of stochastic problems, and 
that there are a theory and tools, both from the modeling and the algorithmic 
points of view, which deal with that problem [15]. 
Given the inherent structure of an optimization problem where some decisions 
have to be made in a given moment taking into account uncertainties about the 
future, the so-called two-stage stochastic problems can be defined. 
The following equation (11) states a generic objective function of a two-stage 
stochastic minimization program: 
 

 ( ) ( , , )minimize f X g X Y        (11) 

 
In the equation (11), X  is the set of the so-called first stage variables, also known 
as here-and-now decisions. Y  is the set of second stage variables, or wait-and-

see decisions, while   is the set of random variables. These random variables are 

modeled as a set of plausible scenarios with an associated probability of 
occurrence. The operator   calculates the expected value of the function g for 
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Figure 14.- Typical structure of a two-stage stochastic program 

the considered scenarios. First-stage decisions are the actual decisions of the 
decision making problem which have to be implemented at the time of solving 
the optimization problem. On another hand, second stage decisions are made 
once the random variables take values, i.e, in a particular scenario. Second stage 
decisions are not actually implemented but just taking into account into the 
optimization process. 
Thus, the interpretation of the objective function of a two-stage stochastic 
problem is to find a set of first stage decisions that are optimal taking into account 
several scenarios, with an associated probability of occurrence, which model the 
uncertainty about the future.  
Uncertainty may also affect input data in the constraints. For example, if 
considering a linear program, matrix A and/or vector b may be uncertain. Such an 
uncertainty is also included in the scenario definition. The resulting problem 
replicates the constraints of the deterministic version of the problem which have 
to be respected in all the considered scenarios.  
Lastly, given the intrinsic temporal relationship among first-stage and second-
stage decisions variables, a special case of constraints need to be added to the 
two-stage stochastic problem. These constraints are called non-anticipativity 
constraints and they guarantee that first-stage decisions are considered in the 
second-stage process., i.e, second-stage decisions are calculated once first-stage 
decisions have been already made and for a given scenario representing one 
realization of random variables.  
Thus, a common structure of a two-stage stochastic program is shown in Figure 
14: 
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Figure 15.- Scenario tree for a 3-stage stochastic problem. 

A generalization of the two-stage problem is to consider more than one decision 
point. It is possible to think about decision-making problems where decisions are 
made in several time slots in such a way that new decisions depend on past 
decisions, past realizations of random variables and plausible future scenarios of 
the uncertain parameters. This approach leads to the so-called multi-stage 
stochastic problems. In this problem, a scenario tree is defined to model the 
uncertainty along the time span of the problem and a policy is proposed to define 
the optimization actions that will be taken in every time spot as a function of past 
decisions and past random realizations. 
A representation of a 3-stage stochastic program is shown in Figure 15, which may 
be straightforwardly generalized to any n-stage stochastic problem. In this figure, 

( )kx  represents the decisions made in stage K while 
( )kw  represents the actual 

realization of the uncertainty after the decision in stage k is made but before the 
decision in stage k+1 is made. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Robust optimization 
 
A different approach to deal with uncertain data when modeling a decision 
making task as an optimization problem is the so-called robust optimization 
framework [16]. Under this approach, an uncertain-but-bounded model of input 
data is used. Thus an uncertainty set is defined as that of allowable values for the 



Mathematical backgroud   31 

 

input data. A solution to a robust optimization problem is required to be robust 
feasible, i.e, it has to satisfy the constraints whatever be the values taken by the 
uncertain parameters as long as they fall into the uncertainty set. This approach, 
although originated around 1970, just started to be developed fast since 20 years 
ago. 
The definition of the uncertainty set is really important to get to meaningful 
solutions. If the uncertainty set is too big, the problem will be really robust but 
the optimal value may be seriously damaged. On another hand, if the uncertainty 
set is too small, there is a risk of the problem to not be as robust as desired. Thus, 
how to define a meaningful uncertainty set is an important modeling issue for a 
given problem. 
 

3.2.3 Application of optimization to power systems problems 
 
The utilization of optimization theory to approach kind of problems appearing in 
the vast area of power systems has been ubiquitous. In this section, some of these 
problems are presented and some literature review of research papers dealing 
with them is provided. 
 

3.2.3.1 Introduction 
 
The utilization of optimization theory is ubiquitous to face power systems 
problems. The goal of this section is to provide some examples of how the 
optimization theory is applied to solve different kinds of problems arising in the 
study of power systems. These problems are classified considering two criteria. 
The first one has to do with who is facing the problem, i.e., problems can be faced 
by the system operator, by the market operator or by any agent or group of agents 
producing and/or consuming electricity. In particular, just renewable resource-
based generators are considered in this section. The second one has to do with 
the time scale concerned by the problem.  
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Figure 16.- Problems in power systems 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 16 several problems arising in power systems are presented. Those 
problems in the millisecond time scale, such as stability or power quality problems 
are not considered in this section. Instead, problems with a time span of several 
minutes up to several years and faced by both system operator and renewable 
energy generator companies are presented. 
 

3.2.3.2 Unit Commitment problem. 
 

First, the unit commitment problem, usually referred to as UC problem, deals with 
the decision that the system operator has to make in order to assign which power 
generation units will be on/off and the actual value of power to be delivered by 
those decided to be online in a given time step. These decisions are to be made 
while respecting several constraints such as power balance, capacity limit, 
minimum up and down times, ramping constraints, etc. 
This problem results to be highly complex because of several reasons. On the one 
hand, the number of variables and constraints used to be high, and often 
nonlinear. Moreover, its discrete nature implies the existence of binary and/or 
integer variables which leads to mixed-integer optimization problems structure. 
On another hand, it appears an inherent uncertainty linked with data concerning 
the load in the system, the available renewable generation or the power plants 
reliability. Thus, optimization under uncertainty frameworks has been treated 
extensively in the research community to solve this problem. For example, the 
unit commitment problem taking into consideration the uncertainty in the 
generation from renewable resources and the challenge of the presence of 
electric vehicles is considered in [17]. In this work, a robust approach is proposed. 
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Similarly, the uncertainty in load and wind generation are considered under a 
robust multistage approach in [18], and the UC problem considering nodal load 
uncertainty is cast as a multistage robust problem in [19]. A multistage approach 
is also proposed in [20] considering the uncertainty in the wind and solar 
generation. A two-stage mixed-integer linear stochastic program is proposed to 
schedule the operation of a set of natural gas-fired power plants in [21]. In this 
problem, the first stage variables represent the day-ahead scheduling while the 
second stage variables represent real-time operations in every scenario modeling 
the uncertainty related to natural gas prices and gas availability. A two-stage 
stochastic model is also proposed in [22] for the UC problem considering 
uncertainty in both load and wind power generation.  
 

3.2.3.3 Planning and investment decisions 
 
Another application of optimization frameworks under uncertainty is aimed at 
solving long-term decision problems. In the scope of power systems, these 
problems have to do with investment decisions both from a system operator and 
from an independent operator points of view. In the first case, the system 
operator needs to make decisions in order to take the best actions to guarantee 
that the power system will keep on working reliably and safely under the 
foreseeable changes concerning, for example, a long-term variation of the 
demand, raising of generation from renewable resources, etc. 
In the second case, an existing or a potential generator may have to make 
decisions concerning new investments in either existing power plants or new 
generation assets. These long-term decision problems are highly affected by 
uncertainty and they have also been treated extensively by the research 
comunity. 
For example, a transmission expansion planning problem is modeled as a mixed-
integer nonlinear optimization problem in [23]. In this problem, uncertainties 
associated with load and wind power generation are considered. A transmission 
expansion problem is also solved in [24]. In this work, a multiobjective and 
multiyear formulation is proposed and the uncertainty concerning the availability 
of generation units, transmission lines, wires, and transformers are handled by a 
MonteCarlo simulation approach. In [25], a framework for transmission and wind 
power expansion planning is modeled as a stochastic bi-level optimization 
problem. In this problem, a set of scenarios is defined to model the uncertainty 
on load and wind generation.  
An equivalent problem to the transmission expansion can be defined for the 
distribution network. A two-stage stochastic problem is proposed to decide the 
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size of several energy storage systems to be installed in the distribution network 
In [26]. Both generation and demand uncertainties are considered.  
A scenario-based stochastic optimization approach to find the best alternative for 
location, size and operational strategy of the distribution network assets such as 
lines, transformers, generators, etc, under uncertainty in demand and renewable 
generation is proposed in [27]. 
A model for evaluating investment decisions in renewable projects under 
uncertainty is proposed in [28]. The types of uncertainty considered include the 
price of electricity, regulatory policies, technological progress and weather 
conditions among others. 
 

3.2.3.4 Operations and participation in the power market. 
 

The operational problems dealing with the participation of generator agents in 
the electricity markets is another broad area of application of optimization theory. 
In particular, the problems considered in this thesis fall into this category. For 
example, the scheduling problem of a thermal power producer participating in a 
pool-based electricity market is considered in [29]. A price taker assumption is 
made and uncertainty in the electricity price is taken into account. This 
uncertainty is modeled by scenarios and thus a stochastic mixed integer linear 
programming approach is proposed. The scheduling problem of a gas-fired 
generator is considered in [30]. A data-driven risk-averse stochastic approach is 
proposed to optimize its participation in real-time market. 
Recently, operational problems concerning renewable energy based generators 
have become very popular in the research community. In particular, problems 
concerning solar power plants and wind farms have received a lot of interest. In 
those cases, an extra issue arises when dealing with this kind of problems: both 
wind energy and solar irradiation are not known when the solution to the problem 
needs to be found. Thus, an optimization under uncertainty framework should be 
considered.  
It is in this framework where this thesis actually falls. In the next chapters, specific 
problems of a wind farm participating in power markets under uncertainty are 
proposed and a detailed literature review is also provided. 
 

3.3 Machine learning techniques 
 
Machine learning is a broad concept that embraces a good number of techniques 
to extract information from a certain set of data. This section is not aimed at 
providing an overview of machine learning concepts, algorithms, and/or 
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Figure 17.- Clustering over a 2-dimension dataset 

techniques at all. Instead, the goal of this subsection is to present the concepts 
that will be used later in this thesis.  
With this goal in mind, the machine learning techniques are split into two main 
groups: unsupervised and supervised learning.  
 

3.3.1 Unsupervised learning.  
 
Unsupervised learning is a machine learning problem where a labeled dataset is 
not available. Among all the unsupervised learning problems, we focus on the one 
called clustering.  
In a clustering problem, the input is a set of arrays representing something, for 
example, a picture or a time sequence of data, and the goal of the machine 
learning task is to find groups of points in the dataset which are similar to each 
other. The output of the machine learning problem is a set of groups, referred to 
as clusters, defined by a centroid and a set of data points assigned to each cluster. 
An example of a clustering problem is shown in Figure 17. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While keeping in mind the dataset available and the goal of the clustering 
techniques, a description of the problem from a mathematical point of view and 
the presentation of two of the most popular algorithms to solve such a problem 
are presented in the following: 
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3.3.1.1 Clustering 
 
Firstly, let’s introduce the concept of probabilistic distance among two discrete 
probability distributions. This distance can be defined by the following equation 
(12). 

1

ˆ ˆ( , ) / ,, , ,
[0,1] 1 1 1 1,

rrN M M N
d F F y z z y p y qmin i j i j i j ì i j jr

y i j j ii j
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         
       

 (12) 

 

In this equation, F and F̂ are two discrete probability distributions. 
iz  represents 

datapoints in F (N elements) and 
ìp  is the probability associated to each of them; 

analogously, ˆ
jz and 

jq  stand for elements in F̂  (out of M elements) and the 

corresponding probability. The probabilistic distance is defined as a minimization 
problem in variables 

,i jy  which weights all the distance among points of both 

distributions. The assignment of these weights have to maintain the probabilities 
of occurrence of every data points, i.e., the total assignment of weights associated 
with one point has to match its probability in its own distribution. 
In general, a clustering technique aims at finding a discrete distribution with 
smaller support than the original one minimizing a probabilistic distance between 
them. Thus, in a clustering problem, F  is the original discrete distribution with N 

elements, whereas F̂  is the target discrete distribution with M elements. These 
M elements correspond to the number of clusters aimed at representing the 
original distribution, thus becoming the decision variables. Hence, the clustering 
problem can be set as the following optimization problem (13): 
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 (13) 

 
Following, two algorithms to solve the clustering problem are presented. These 
algorithms are called k-means and k-means++. 
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3.3.1.1.1 K-means algorithm 
 

The clustering problem cast as an optimization problem as to equation (13) is a 
non-convex NP-hard problem. To deal with this situation, a local optimum of this 
optimization problem can be found by modifying the problem to perform a hard 
assignment of data points to each cluster, i.e, each point of the original dataset 
can be only assigned to one cluster. To do so, constraints need to be rewritten as 
stated in (14) and decision variable 

,i jy  will become a binary variable.  

The clustering problem just defined may be solved by applying the k-means 
algorithm to the original dataset. In the k-means algorithm, the Euclidean distance 
is considered (i.e., r = 2).  
 

 
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 (14) 

 
Thus, the k-means algorithm proposes the next sequence of operations to solve 
the problem by finding a local optimum. This sequence is represented in Figure 
18. 
 
Step 1 : Initialize the cluster centers.  
In this first step, the number of clusters needs to be defined.  
 
Step 2 : Assign observations (data points) to each cluster based on a minimum 
distance criteria  

2

2
ˆ
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j
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Step 3 : Revise/update cluster centers as mean of assigned observations. 

:
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Figure 18.- Iterative process in the k-means algorithm 

 

Step 4 : Repeat 2 and 3 until convergence. 
 
Thus, the k-means algorithm can be seen as an alternating minimization algorithm 
or a coordinate descent algorithm which guarantees local convergence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A common issue for non-convex problems is the strong dependence on the 
initialization concerning the quality of the local minimum obtained. In order to 
handle this issue, a step forward may be given. 
 

3.3.1.1.2 K-means ++ 
 

This algorithm focuses on the initialization step of the k-means algorithm. It aims 
at finding a good guessing for the first set of centroids that will be used in the first 
iteration of the k-means algorithm. The steps of this algorithm are shown in Figure 
19. 
 
Step 1: Choose a cluster center out of the whole dataset randomly. 
Step 2: Calculate the distance from every point of the data set to the defined 
centroid. 
Step 3: Choose the second centroid as the farthest point to the first centroid. 
Step 4: Calculate the distance from every point to its closest centroid. 
Step 5: Choose the third centroid as the data point with the biggest distance 
computed. 
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Figure 19.- K-means++ initialization 

Step 6: Repeat sequence until all the necessary clusters is defined. 
Step 7: Run a k-means algorithm with the defined clusters as an initialization step. 
 
Although it is computationally more expensive to initialize the k-means in this way, 
it is usually worth due to faster convergence and better local optimum obtained. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

3.3.2 Supervised learning. Neural Networks. 
 
Unlike unsupervised machine learning problems, a labeled dataset is available 
when dealing with supervised learning problems. A labeled dataset is made up of 
a set of input data and the known corresponding output. Thus this pair 
input/output is used to train the model and found a good representation of the 
underlying model. 
The most popular techniques for supervised learning are statistical learning 
algorithms, support vector machines (SVM), and neural networks. 
In this subsection, the focus is put on neural networks in order to provide a brief 
introduction to a vast area of knowledge that will be applied to some specific 
problems in coming chapters. 
Firstly, the concept of feedforward neural network is explained. Afterward, the 
limitations of this concept are stated and a new architecture is presented to 
overcome such limitations, the recurrent neural networks.  
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Figure 20.- Structure of a perceptron. 

3.3.2.1 Feedforward neural networks 
 
Firstly let’s introduce the concept of perceptron. The perceptron is the basic unit 
over which a feedforward neural network is built.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The simplest perceptron, also referred to as McCulloch-Pitts neuron [31], is 
represented in Figure 20. A n-dimension array is the input of a perceptron. Each 
component of the array is assigned a weight. A weighted sum of the inputs plus a 
constant value called bias is calculated and fed into a so-called activation function. 
In the most simple case, a step function is defined as the activation function. The 
perceptron defined in this way is a binary classifier, i.e., given an input, the 
perceptron assign it to one of the two possible outputs. 
Obviously, given the simplicity of the model, it is expected that a single neuron 
can only make simple decisions.  
In order to model more complex situations, a generalization of the neuron 
concept is given by the multilayer feedforward neural networks as shown in Figure 
21. 
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Figure 21.- Feedforward NN and several activation functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Three kinds of layers are defined in a multilayer feedforward neural network. On 
one side, an input layer is defined as in the case of the simple perceptron. On 
another side, an output layer with as many neurons as needed is defined. Between 
these two layers, an arbitrary number of hidden layers is added in order to provide 
the network with the desired modeling capabilities. The neural network thus 
defined uses to be fully connected, i.e., all the neurons are connected with all the 
neurons of the next layer. 
The way this network works is a generalization of that of the simple perceptron. 
Thus, each neuron of the first hidden layer calculates the weighted sum of all the 
inputs and applies to it as an activation function. Several activation functions can 
be used, being the sigmoid the most popular. Several activation functions are 
shown in Figure 21. The output of each neuron is connected to every neuron in 
the next layer which will repeat the process. This flow of information from input 
to output is the reason why these networks are referred to as feedforward nets. 
The modeling capabilities of a feedforward neural network, once the structure of 
the net is defined, is given by the definition of the weights and bias on every 
neuron and layer. In a supervised learning framework, where a labeled dataset is 
available, the process of deciding which weights and bias are the best to model a 
given problem is called the training of the neural network. 
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A labeled dataset is a set of pairs input/output. This dataset is also referred to as 
training set. The training of the neural network is an iterative process where the 
first step is to initialize the weights and bias of the whole network. Then, the first 
input of the training set is fed into the network and the output is calculated as to 
the process explained before. The calculated output of the network is compared 
with the actual output and thus an error can be calculated. Once the error is 
calculated a process to update the weights and bias is defined and the process 
starts it over with another sample of the training set. This iterative process ends 
when the error is smaller than a predefined threshold. 
Usually, a batch of elements of the training set is fed into the network in every 
iteration for stability reasons of the training process. Moreover, the whole training 
set can be used more than once during the training process. Every time the 
dataset is used is referred to as an epoch. 
The idea of the training process is that in every iteration the weights and bias be 
updated in a way that minimizes the error function. This minimization problem is 
highly non-linear due to the presence of the activation functions. Most of the 
algorithms used to face this problem belongs to the family of Gradient Descent 
algorithms: Stochastic gradient descent, Adam, Nesterov accelerated gradient, 
and others. 
All these algorithms need at some point to calculate the gradient of the error, i.e, 
how the error depends on the weights and bias in order to update them for the 
next iteration. The most popular algorithm used to calculate this gradient is called 
backpropagation algorithm [32].  
 

 Recurrent Neural Networks. 
 
The recurrent neural networks (RNN) include loops in the structure of the 
network, allowing information of one-time step to persist and condition the next 
steps [33]. In Figure 22, an RNN is represented. The utilization of this structure 
has been extremely successful in problems involving sequence data such as 
speech recognition, language modeling and translation, image captioning, etc. 
The unfold representation of the loop makes it clearer why this structure is 
naturally used to model sequence data.  
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Figure 22.- Recurrent Neural Network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
In every time step, it is possible to have as many layers as needed. Moreover, in 
every time step not just the output of that neuron is calculated but also the so-
called hidden state, which is passed to the next time step and will be concatenated 
with the input in that time step. That is the mechanism to pass information from 
one time step to the next. It is to note, that the weights and bias, i.e.,the 
parameters of the net, are shared among all the time steps. 
The training process of an RNN is quite similar to that of a feedforward neural 
network. In this case, the backpropagation algorithm used in the feedforward case 
is modified in order to better fit the structure of the RNN. The resulting algorithm 
is called backpropagation through time (BPTT) [34]. 
There are cases where the time sequence of input data may be quite long. In 
theory, RNN is capable of learning under such conditions but, in practice, its 
performance is rather poor. This is due to the fact that the gradient tends to either 
vanishes or go to infinite when the error is propagated through long sequences.  
To overcome this limitation, researchers have proposed RNN featuring more 
complex neurons. The goal of this more complex neurons, also called cells in this 
context, is to provide each time step with the capability to decide what 
information is to be passed to the next cell, deleted or updated. One of the most 
popular cells is the Long Short-Term Memory (LSTM) [35]. In Figure 23 is shown a 
simple RNN in the upper figure and an RNN featuring LSTM cells in the bottom 
figure [36].  
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Figure 23.- Upper: Simple RNN; Bottom: LSTM-RNN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The key aspect of the LSTM cell is that one more output to the cell is added, the 
so-called cell state. This cell state run through the entire chain and it is controlled 
by three gates that are able to add or remove information in it depending on the 
current input and past cell states.  
 

3.4 Conclusions 
 
A set of mathematical concepts and tools were presented in this chapter. The 
concepts are presented in a not formal way in order to give a qualitative 
introduction to those not familiar with optimization and machine learning. The 
goal is to give the reader a basic knowledge of the tools that are used in the 
coming chapters. Thus, firstly, the concept of an optimization problem from a 
mathematical point of view is introduced. The importance of including ways to 
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consider uncertainty in the input data is also highlighted and two approaches to 
handle it are presented: stochastic and robust optimization. 
Machine learning is a vast area of knowledge in the applied mathematics world. 
It has shown a great power to deal with huge amounts of data and extract valuable 
information out of them. In this chapter, clustering techniques, as an example of 
unsupervised learning, and neural networks, as an example of supervised 
learning, were presented. Both techniques are used in coming chapters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
CHAPTER 4 
 
 

4 Evaluation of the uncertainty 
in the scheduling of a wind 
and storage power plant 
participating in day-ahead and 
reserve markets. 

 
 
 
 
One of the main problems faced by a renewable energy based power plant 
operator when deciding its strategy to participate in the power markets is that 
data concerning both renewable energy availability and market parameters are 
not known when the decisions are to be made. In this chapter, an agent consisting 
of a wind farm and an energy storage system is considered and a methodology to 
evaluate how much does it cost the uncertainty associated with available wind 
energy, market prices, and regulation requirements is proposed. For such a goal, 
the decision-making problem of such a plant participating in day-ahead and 
reserve markets is modeled as a Mixed Integer Convex program. A real-world case 
of a wind farm located in northwestern Spain is studied and several simulations 
are performed over one year in order to show, in one hand, the importance of 
participating in reserve markets, and in another hand, the effects of uncertainty. 
Some results of the work described in this chapter were published in [37]. 
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4.1 Introduction 
 
One way to overcome the drawbacks associated with the use of renewable energy 
resources is to use energy storage systems (ESS) to be able to manage the 
generation from renewable energy resources appropriately [38]. With this idea, a 
wind farm (WF) as a renewable energy source and an ESS is considered in this 
chapter.The resulting system will be referred to as a Wind and Storage Power 
Plant (W&SPP). The traditional way to operate a system of this kind is to consider 
such a system participating in the day-ahead energy market (DAM) following the 
strategy of buying energy during low price periods to be sold during peak hours. 
Several authors have reported the lack of economic feasibility for such a strategy 
[39], proposing a more comprehensive participation in the electricity markets 
instead. In particular, [40] shows that the participation of a pump-hydro energy 
system (PHES), which is a particular case of ESS, in the reserve market (RM) is 
mandatory to get economic feasibility. The advantages of operating jointly a wind 
farm and a pump hydro plant as ESS in the DAM are shown in [41]. Not too much 
research attention has been devoted to the modeling of RM in the short term 
scheduling problem of a wind farm [42]. For example, [43] models the 
participation of a hydro-pump power system in the RM without considering the 
uncertainty effects in the results, [44] discusses two strategies for a wind farm to 
bid under uncertainty in both DAM and RM and [45] proposes an adjustable 
interval approach to handle the wind power uncertainty in the problem of 
scheduling of a wind farm operating in both markets. However, several papers 
have studied the impact of the uncertainty of wind power availability in different 
kind of problems. Just to name a few, [46] proposes a stochastic Mixed Integer 
Linear Programm to asses the impact of the wind uncertainty on ESSs and thermal 
units scheduling in Unit Commitment problem and; [47] considers several 
scenarios to propose a two-stage optimization problem of a wind-ESS system 
while also considering demand response capabilities.  
Two main questions are to be answered in this chapter. On the one hand, what is 
the influence of the uncertainty in the net income achievable by a W&SPP 
participating in both DAM and RM and, on another hand, what are the benefits of 
including an ESS in such a system. 
 
Thus, the main contributions of this chapter are: 
 

 Develop  a deterministic model of a W&SPP participating in DAM, RM, 
and BM. Imbalances and regulation capabilities both upwards and 
downwards are allowed in both modes of operation and in both markets. 
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T

 

 Evaluate the increase in the net income that a W&SPP can get by 
participating in the RM. 

 

 Evaluate the cost of the uncertainty peculiar of several parameters in the 
model such as market prices, available wind energy, and requirements of 
regulation by the system operator (SO) in the RM. 

 

4.2 Nomenclature  
 
Parameters 
 
 Number of periods. 
 
  Duration of each period. 
 
 Available wind power in time t. 
  

Initial energy stored in the ESS. 
  
 Charging efficiency of the ESS. 
 
 Discharging efficiency of the ESS 
 
 Maximum energy stored in the ESS 

. 
 Maximum power to/from ESS. 
  

 Minimum state of charge of ESS 
 

 Energy price in the DAM. 
 

Energy price of deviation up in BM. 
 

Energy price of deviation down in 
BM. 

 
Auxiliary parameters.  
 

 Price of power reserve. 
 
 Energy price under regulation up. 
 
 Energy price under regulation 

down. 

 
 Price of energy not supplied for 

regulation up. 
 
 Price of energy not supplied for 

regulation down. 
 
 Ratio of reserves required for 

regulation up. 
 
 Ratio of reserves required for 

regulation down . 
 
 Ratio between reserve up and total 

reserve.   
 

Continuous Variables 
 

Wind power used in time t. 
 
 Energy stored in time t. 
 
 Power entering the ESS in time t. 
 
 Power delivered by the ESS in time 

t. 
 
 State of charge of ESS in time t. 
 
 Power to/from W&SPP in time t. 
 
 Power offered in the DAM for 

every hour of day D. 
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 Power actually delivered/taken in 
time t in the DAM. 

 
 Participation in the BM. 
 
 Deviation up in BM. 
 
  Deviation down in BM.. 
 
 Total power committed in the RM. 
 

Power committed for regulation 
up. 
 
 Power committed for regulation 
down. 
 

Energy required by SO for reg. up. 
 
 Energy required by SO for reg. 

down 
 
 Energy actually offered for reg. up. 
 
 Energy actually offered for reg. 

down. 
 
 Deviation in regulation up. 
 
 Deviation in regulation down. 
 
 Binary Variables 
 
 1 if ESS is charging. 0 otherwise.
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All parameters and variables representing power are expressed in MW. 
Accordingly, all parameters and variables representing energy are expressed in 
MWh. As to market prices, euros are considered as the currency. 
The remaining of this chapter is organized as follows. Firstly, the considered 
system and the power market it is involved in, are described. Afterward, the 
mathematical model to describe the aforementioned problem is developed. 
Lastly, a real-world application of the developed model is presented and some 
conclusions are discussed and highlighted. 
 

4.3 Description of the system and electricity markets.  
 
The considered system puts together a wind farm and an energy storage system 
operating as a single unit. Such a system is called a Wind and Storage Power Plant 
and interacts with the utility as a single unit, selling or buying energy to/from the 
grid while allowing internal power flow from the WF to the ESS. The objective of 
this system is to increase the manageability of the wind farm in an attempt to get 
a dispatchable generation unit.  
The mechanisms of the market described in this chapter refer to those of the 
Iberian electricity market which has been already introduced in Chapter 2. In 
particular, in this chapter, the W&SPP is considered to participate in day-ahead, 
balancing, and reserve markets. Thus, on the one hand, the W&SPP operator will 
send its offer to participate in the DAM in the morning of day D-1 (being D the day 
when the energy will be delivered). This offer consists of the hourly amount of 
energy that the power agent is willing to sell or buy at the corresponding price at 
that hour. It is possible to deliver a different amount of energy with respect to 
what was committed in the DAM in every time slot. This situation is handled by 
the balancing market (BM) as already explained in Chapter 2. On another hand, 
the W&SPP is also allowed to participate in the reserve market. Also during day 
D-1, the W&SPP operator will place its offer to participate in the RM. This offer 
consists of an amount of power that the W&SPP is able to supply or consume in 
each hour of day D and which is therefore available for regulation tasks, which is 
called the regulation band. During day D the SO will require some percentage of 
the power committed in the RM to be actually delivered by the W&SPP. 
Regulation requirements can be either upwards or downwards. Let’s define both 
kinds of regulation for generating mode of operation. Specifically, regulation 
upwards means to be able to supply a surplus of energy and regulation 
downwards means to supply less energy for regulation goals. With a similar 
reasoning, in importing mode, regulation upwards is defined as importing less 
energy and, conversely, regulation downwards is to import more energy for 
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Figure 24.- Participation in DAM, BM, and RM 

regulation tasks. In both cases, regulation upwards aims at raising the frequency 
of the system while regulation downwards aims at decreasing it.  
The operation in these markets is shown in Figure 24. Decisions on how much to 
offer in both DAM and RM are made in day D-1. These decisions are made in an 
uncertain environment. For example, market prices, available wind energy, and 
regulation requirements by SO are not known in day D-1. Thus, the influence of 
the uncertainty affecting these parameters needs to be studied.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4 Description of the deterministic model. 
 
In this section, the mathematical model of the W&SPP participating in the 
electricity markets described above is presented. The W&SPP is supposed to be a 
price taker agent meaning that it is not able to influence the market price no 
matter how much power/energy it offers. Another assumption is that all the 
parameters are supposed known when decisions are made, thus resulting in a 
deterministic model. All the functions taking part to the model are convex or 
affine functions while continuous and binary variables are used, so a Mixed 
Integer Convex Program is developed and applied. Firstly, the model for a W&SPP 
participating only in the DAM and BM is presented. Secondly, the participation in 
the RM is added to the model.  
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4.4.1 W&SPP participating in DAM. 
 
The first case to be considered is the W&SPP participating in the DAM and BM. In 
this situation, imbalances are allowed in both modes of operation: selling 
(exporting) and buying (importing) power. The objective function aims at 
maximizing the net income of the operation of the system as stated by the 
equation (15).  
All the subindexes t in this chapter refers to 1,....,t T : 

 
, ,, ,ˆ( )dam dam bm up bm dw

t t t t

t t t

bm up bm dw

t t tmaximize Pl             (15) 

It is important to note that in the DAM, it is equivalent to talk about power and/or 
energy because the time step considered is one hour. In the equation (15), the 
first term accounts for the net income due to selling and buying energy in every 
hour of day D corresponding to DAM. The second and third terms account for the 
penalties resulting from not matching the commitments taken in day D-1 for 
participation in the DAM, which is handled in the BM. It is to note that unbalances 
upwards always are a positive income. On the other hand, imbalances downwards 
always are a negative income. For example, if the system is exporting power and 
decides to export more than committed, the extra power will be paid at deviation 
up price, and if it decides to sell less power it will have to return the money 
corresponding to that power difference at deviation down price. An analogous 
reasoning should be made for the case where the system is importing power. The 
imbalance in the DAM is defined in such a way that it will be considered an 
imbalance up when it is positive and an imbalance down when it is negative, no 
matter the mode of operation as in the following equation (16). That definition 
allows us to avoid the use of binary variables, which is common in this problem 
[48] while considering separately the imbalances up and down, governed by 
equations (17) and (18). Thus, the objective function can be rewritten as (19). 
There are other modeling proposals to avoid the use of binary variables to model 
the deviations in DAM [49]. Our model generalizes it in the way that is is also valid 
for the cases where DAM prices are zero. 
 

ˆbm dam dam

t t tP P           (16)

 ,
[,0 ]bm dw bm bm

t t tmax 
          (17) 

 ,
[,0 ]bm up bm bm

t t tmax 
          (18) 

, ,ˆ [ [( ] ] )dam dam bm up bm dw

t t t t

t t t

bm bm

t t tminimize Pl   
 

            (19) 
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This objective function is not linear because (17) and (18) represent convex 
functions. As a consequence, a typical linear solver cannot be used to handle this 
problem. For this reason, a convex problems modeling software, such as CVX is 
proposed to tackle this problem [50]. This software counts on a set of rules to 
accept a problem as convex. The equation (19) will not be accepted by CVX as a 
valid convex function because the difference between convex functions is not 
generally convex. However, in our case, equation (20) always holds [49], thus 
making equation (19) actually convex. An intuition on why this is so, is shown in 
Figure 25.   
  

, ,bm dw bm up

t t           (20) 

, ,

2

bm dw bm up
bm t t
t

 



        (21) 

 
, ,

2

bm dw bm up
bm t t
t

 



         (22)  

 
To overcome this situation, the objective function needs to be represented in a 
more convenient way to be handled by convex programs modeling software. To 
do so, the difference of the two max functions appearing in the equation (19) is 
equivalently expressed as the sum of a linear function plus an absolute value 
function [51]. For such a transformation, two auxiliary parameters are defined 
according to equations (21) and (22).  
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Figure 25.- Transformation of the difference of two max - functions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, the objective function may be rewritten as equation (23), where the 
difference between convex functions is substituted by a convex function (absolute 
value function) multiplied by a constant (CVX will accept it as convex as long as 
the constant is greater than zero) summed to a linear function.  
      

ˆdam dam bm bm bm bm

t t t t t t

t t t

minimize P           (23) 

 
The next step is to include the model of the W&SPP and the DAM into the 
optimization problem. To do so, a set of constraints is defined.  
 

, ,

0

1 1

1t t
ess ess ess in ess out

t t in t

out

E E l P l P 
 


 

          (24) 

 
Equation (24) sets the energy stored in the ESS in every time step as a function of 
the initial conditions, the power entering and leaving the ESS and the efficiency of 
charging and discharging processes. 
Equation (25) limits the wind power to that available in the wind farm. Also related 
with the ESS, equation (26) requires to have the same energy stored at the 
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beginning and at the end of the period under study (one day in our case) while 
equations (27), (28), and (29) limits the maximum and minimum energy stored in 
the ESS. 
 

ˆwind wind

t tP P         (25) 

  

0

ess ess

TE E          (26) 

 
ess ess

tE E          (27)  
ess

t
esst

E
SOC

E
         (28) 

       
min

t tSOC SOC         (29) 

 
Constraints (30) and (31) ensure that the power can not enter and leave the ESS 
at the same time while setting the maximum power that can enter/leave the ESS. 
The power balance of the systems is defined in the equation (32). Lastly, equation 
(33) makes the connection between the W&SPP and the power market and 
equation (34) sets some non-negative constraints. 
 

,ess in ess

t t tP P u         (30) 

 
, (1 )ess out ess

t t tP P u          (31) 

 
, ,wind ess out ess in

t t t tP P P P          (32) 

 
dam

t tP P          (33) 

 
, ,; ; 0ess out ess in ess

t t tP P E        (34)  

 

4.4.2 W&SPP participating in DAM and RM. 
 
In this case, the objective function also takes into consideration incomes from the 
RM.  
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t t t t t t

t t t

minimize P IRM            (35)  
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 

      

  

  

 
 (36) 

 
The objective function (35) includes the income coming from the participation of 
the W&SPP in the RM as to equation (36). The first term of this equation accounts 
for the incomes due to the power commitment in the RM, i.e., the offered 
regulation band. If the SO requires the W&SPP to supply reserve up, that will 
involve an extra income no matter the system is either in generation or 
consumption mode. On the other hand, the supply of regulation downwards will 
produce an extra negative income. The last two terms of (36) accounts for the 
cost of deviating from the regulation requirements ordered by the SO.  
In this model, all the constraints (24)-(34), except equation (33), still applies. 
However, several constraints have to be added to account for the participation in 
the RM. 
 

, ,ˆ ˆ ˆrm rm up rm dw

t t tP P P         (37) 
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tP P         (39) 

 
,

,
ˆ

ˆ

rm up
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t
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P
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Equation (37) sets the total regulation band as the sum of both regulation up and 
down. In this model, it is considered that the maximum power capacity eligible for 
RM corresponds to that of ESS. This is defined in equations (38)-(39). The meaning 
of this assumption arises as an attempt by SO of just counting on “manageable” 
capacity, thus excluding the wind power as available for regulation requirements. 
It is also needed to set the ratio between the regulation up and the total 
regulation band offered. This ratio has to follow the ratio assigned for the whole 
system [52] as to equation (40). 
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t t reg tD E E         (45) 
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,
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t t reg tD E E        (46) 

 
Constraints (41)-(46) sets the energy actually required by the SO, the energy 
actually delivered by the W&SPP in the RM and the deviation in the RM. It is 
important to note that the following equation (49) always holds. This means that 
the system can follow requirements up and down in the same hour. 
 

, ,dam rm up rm dw

t t t t t tl P l P E E          (47) 

 
, , , , , ,ˆ ˆ; ; ; ; ; 0rm up rm dw rm up rm dw rm up rm dw

t t t t t tP P P P E E      (48) 

 
Lastly, the equation (47) sets the energy balance between the system and the 
market and several nonnegative constraints are defined in (48). 
 

, , 1rm up rm dw

t t t T         (49) 

 

4.5 Method to evaluate the influence of the uncertainty. 
 
The scheduling problem of a W&SPP participating in DAM and RM is a decision-
making problem under uncertainty. When the decisions are to be made in day D-
1, data concerning availability of wind energy, regulation requirements in the 
reserve market, and prices of energy and reserves are not known. To evaluate the 
effect of the uncertainty in these parameters of the problem a perfect information 
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Figure 26.- Perfect information hypothesis. 

hypothesis is proposed in order to be used as the upper bound of the net income 
achievable.  
 

 Perfect information hypothesis: 
 
Under this hypothesis, the optimization problem is solved considering perfect 
knowledge of uncertain parameters. In this case, available wind energy in day D, 
energy prices, and regulation requirements from SO are supposed to be known 
and fed into the model. With this assumption, an upper bound on the achievable 
net income by the W&SPP is calculated as explained in the following Figure 26.  
 
 
 
 
 
  
 
 
 
 
 

 Real information hypothesis: 
 
The reality is that in day D-1 data concerning available wind energy, energy prices, 
and regulation requirements by SO for day D are not known. In order to solve the 
proposed deterministic problem, some values have to be assigned to those 
parameters. Once the uncertain parameters are defined, the deterministic 
problem can be solved and the participation in the DAM and RM is defined. When 
day D comes, all the guessed parameters take actual values, i.e., uncertainty is 
revealed. Thus, in real time, decisions to accommodate to these actual values are 
to be made as shown in Figure 27. 
It is important to note that these actions concerning the actual participation in 
the balancing market and the actual provision of regulation services are computed 
as an optimization problem. The optimization problem is solved for the 24 hours 
of day D at the same time as if we knew the actual values of available wind energy 
and regulation requirements at the same time. This is equivalent to a real-time 
optimization technique because the operation of the ESS is also decided in day D-
1. 
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Figure 27.- Real information case. 

 
 
 
 
 
 
 

 
 

 
Depending on the values considered to model uncertainty, the net income under 
RI hypothesis will be different and by comparing it with the net income under PI, 
the cost of the uncertainty may be evaluated. 
 

4.6 Case study 
 
This case study is focused on a wind farm located in Northwestern Spain [2]. The 
objective of this study is threefold. First, to compare the operation of the system 
when it just participates in the DAM and when participating in both DAM and RM. 
Secondly, to analyze in each case the effects of having storage capabilities in the 
net income of the W&SPP, and lastly to evaluate the cost of the uncertainty linked 
to several parameters in the models: market prices, available wind energy, and 
regulation requirements made by the SO in the RM.  
In order to evaluate the influence of the storage and the influence of the 
uncertainty, a simulation period of one year is considered. It means that the 
optimization problem will be solved once per day for a whole year.  
To perform this simulation, actual data concerning available wind energy, both 
forecast and real-time, is kindly provided by the WF operator. On the other hand, 
market data, both prices and regulation requirements, are downloaded from the 
Spanish System Operator website [1], since they are publicly available. 
To evaluate the cost of uncertainty the perfect information case is considered as 
benchmark . Thus, firstly, the deterministic problem is solved as if all the data were 
actually known. This will be referred to as a perfect information case (PI) and it is 
an upper bound for the net income achievable. Secondly, the same problem is 
solved with forecast and/or estimated values for the uncertain parameters which 
correspond to the real information (RI) case. The decisions made are evaluated in 
real time with the actual values of the uncertain parameters. Thus, the actual net 
income is computed. By comparing both results of the net income, the influence 
of the uncertainty can be derived. 
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Look - Back D-1 D

Figure 28.- Estimation of market prices. 

4.6.1 Treatment of uncertain parameters 
 
In this subsection, the procedures to forecast/estimate the uncertain parameters 
are explained. Firstly, the energy and power market prices are estimated through 
a moving average approach to calculate the prices for day D based on the prices 
of recent days. Secondly, the available wind energy for day D is directly obtained 
from forecasts provided by the WF operator. Lastly, regulation requirements by 
SO are estimated by analyzing historical data.  
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Figure 29.- Forecast available wind energy vs. actual available wind energy 
 

4.6.1.1 Market prices 
 
The W&SPP operator does not know the market prices when it has to make the 
decisions concerning its participation in DAM and RM. 
In this chapter, a look-back approach is proposed to feed energy and power prices 
data to the deterministic optimization problem that has to be solved in day D-1. 
This approach will consider as the forecast prices for day D an hourly average of 
the prices that occurred during several days before D-1. This period is referred to 
as Look-Back. In particular, a look-back period of one week is considered in this 
work. The same strategy is deployed for all the prices involved in DAM and RM. 
An example of this approach for one day and, for DAM and RM regulation band 
prices, is shown in Figure 28. 
 

4.6.1.2 Available wind energy 
 
The wind farm operator relies on available wind energy forecast for day D to make 
its offers to participate in DAM and RM. Thus, in day D-1, a forecast for the 
available wind energy in every hour of day D is available. This forecast is used to 
solve the deterministic problem. The decisions made are evaluated in day D with 
actual data of available wind energy. 
One year of data is represented in Figure 29. Every point of the scatter plot is one 
hour of the year under simulation. The forecast available wind energy and the 
actual available wind energy can be read for each point in the vertical and 
horizontal axis respectively. 
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Figure 30.- Regulation requirements estimation. 

4.6.1.3 Regulation requirements  
 
The percentage of the reserve committed in the RM that will be actually required 
by the SO to perform regulation tasks is not known in day D-1. To estimate this 
parameter two approaches are proposed. Firstly, a one year of hourly data for 
regulation requirements, both up and down, are represented in Figure 30 (Left). 
From this figure, three deterministic cases will be considered. The first one 
considering that all the reserve committed will be required for regulation down. 
Second, that just a small fraction of the reserve committed is required for 
regulation up and down, and lastly, all the reserve committee is required for 
regulation up. The three cases are highlighted with a red dot in Figure 30 (left). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second approach is shown in Figure 30 (Right). Under this approach, the 
regulation requirements for every hour of every day are generated randomly. All 
the points generated should respect equation (49). 
 

4.6.2 W&SPP participating in DAM . 
 
The first considered case is that of the W&SPP only allowed to participate in the 
DAM. In this case, both available wind energy and, DAM and BM prices are not 
known when decisions are to be made. In Table 1, the yearly net income 
achievable by the W&SPP under several simulation cases is presented. Several 
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Table 1.- Net income participating in DAM for several ESS and uncertainty cases 

No Storage 1 MWh 2 MWh 5 MWh

No Storage 1326.6

1 MW 1329.1 1331.4 1336.2

2 MW 1329.1 1331.6 1338.2

5 MW 1329.1 1331.6 1339.1

No Storage 1258.5

1 MW 1260.1 1263.2 1268.1

2 MW 1261 1263.5 1270

5 MW 1261 1263.5 1271

No Storage 1326.6

1 MW 1328.1 1329.3 1331.9

2 MW 1328.1 1329.6 1333

5 MW 1328.1 1329.6 1334

No Storage 1258.5

1 MW 1259.9 1261.2 1263.8

2 MW 1259.9 1261.4 1264.9

5 MW 1259.9 1261.4 1265.9

NET INCOME (k€ / YEAR) - DayAhead Market

ESS CAPACITY Uncertainty Case

Available Wind Energy DAM Prices

PI

E
SS

 P
O

W
E

R
 RI PI

PI RI

RI RI

PI

ESS, varying both power and energy capacity, are considered for simulation. All 
the systems are evaluated under several hypotheses concerning the knowledge 
of the uncertain parameters. Under perfect information hypothesis (PI) a perfect 
knowledge of the uncertain parameters is assumed. On another hand, under real 
information hypothesis (RI) the uncertain parameters are estimated as explained 
earlier. By analyzing the results, the influence of the uncertainty may be 
evaluated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, under PI, it will be considered a perfect knowledge of the available wind 
energy in the day D and, DAM and BM prices. That is the ideal situation and the 
results will be an upper bound on the net income achievable by the system. The 
operation strategy under this assumption is to arbitrate between the hour of day 
D with the highest price and the hours with the lowest one. If the ratio energy 
capacity/power of the ESS is greater than one, the strategy will be to fill the ESS 
in decreasing order of arbitrage prices. On the other hand, it makes no sense to 
add power to the ESS above the energy capacity. Under RI considerations, the 
W&SPP operator counts on available wind energy forecasts to take decisions 
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Table 2.- Net income participating in DAM and RM. 

NO STORAGE

* Reg UP = 0.1 and Reg DOWN = 0.1

** Reg UP = 1  and Reg DOWN = 0

*** Reg UP = 0 and Reg DOWN = 1

RI RI

RI - Deterministic I

RI - Deterministic II

1326.6

1954.41258.5

RANDOM

RI - Deterministic III

RI - Deterministic I *

RI - Deterministic II **

RI - Deterministic III ***

RANDOM

PI

PI

PI

PI PI

RI PI

PI RI

PI PI

2022.5

ESS 

Available Wind Energy Market Prices

Uncertainty Case

NET INCOME (k€ / YEAR) - DayAhead & Reserve Markets

2 MW / 2 MWh Regulation Requirements

1326.6

1258.5

1326.6 2019.3

1972.5

1917.6

1935.6

1963.9

1928.7

1856.8

1905.3

1918.6

concerning how much energy is to be sold/bought during day D. During real-time 
operation, the W&SPP will have to deviate to accommodate the actual wind 
energy available. It is to note that the influence of the uncertainty in the market 
prices is small. In contrast, wind energy forecast error in the net income is more 
important, inducing the cost of uncertainty a reduction in the net income by a 5% 
with respect to that achievable under PI.  
 

4.6.3 W&SPP participating in DAM and RM . 
 
If the W&SPP is also allowed to participate in the RM, one more source of 
uncertainty appears. In day D-1, when decisions are to be made, the amount of 
regulation that the SO will require in day D is not known. As already explained, 
several cases to estimate these regulation requirements are considered.  
In order to evaluate the uncertainty associated with each of the unknows 
parameters, several simulations are run considering different levels of knowledge 
of these uncertain parameters as it can be seen in Table 2 . As to the ESS, only one 
system with 2 MW of power and 2 MWh of capacity is considered. 
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By analyzing the results obtained, two main outcomes are to be highlighted. 
Firstly, the participation of the W&SPP in the RM greatly increases the net income 
of the system. This increase comes, primarily, from the selling of capacity in the 
RM. For example, for the ESS simulated and under PI, the net income increases by 
almost 50% when participating in RM. Secondly, and similarly to the case where 
the W&SPP is only allowed to participate in the DAM, the influence of the 
uncertainty in the market prices is small. Uncertainty in available wind energy and 
regulation requirements have similar effects on the achievable net income. In this 
case, both available wind energy and regulation requirements reduce the net 
achievable income by 3.5%. 
 

4.7 Conclusions 
 
A convex deterministic model is developed to model the participation of a W&SPP 
in both DAM and RM. This model avoids the use of binary variables to model the 
participation in the BM and it is successfully used to optimize the operation of 
such a plant participating in the particular case of the Spanish electricity market. 
In such a case, it is shown that adding an ESS to a WF just participating in the DAM 
may not be economically feasible. On another hand, the net income increases 
sharply if the W&SPP is allowed to participate in the RM as considered in this 
work. 
As to the influence of the parameters affected by uncertainty in the net income 
achievable by the W&SPP, it is important to note that even a simple approach is 
enough to reduce the effects of the uncertainty concerning market prices. The 
effectiveness of the approach to estimate market prices comes from that it 
respects the daily pattern of prices. Although the price estimation is not accurate, 
the daily pattern is well represented and thus, the decisions made are close to 
those made under PI hypothesis. Uncertainty concerning available wind energy 
and regulation requirements have similar effects on the net income achievable. 
The reduction in the net income because of this uncertainty ranges from 2-4% 
depending on the ESS considered.  
As a consequence, in order to reduce the effects of uncertainty, more effort 
should be done to get better forecasts of available wind energy and better 
estimates of regulation requirements. Optimization approaches under 
uncertainty may also be useful to handle the intrinsic uncertainty in those 
parameters. Another improvement would be to consider longer optimization 
periods, for example, one week long, allowing for more profitable arbitrage 
strategies. 
 



 

CHAPTER 5 
 

5 A data-driven stochastic 
optimization approach of a 
wind and storage power plant 
participating in day-ahead and 
reserve markets. 

 
 
In this chapter, a decision-making framework under uncertainty for a wind and 
storage power plant participating in day-ahead and reserve markets is developed. 
Available wind energy and regulation requirements by the system operator are 
considered as uncertain parameters. To maximize the net income of this system 
under uncertainty, a two-stage convex stochastic model is developed. In order to 
create meaningful scenarios to be used in our proposed stochastic model, at first, 
a Long Short-Term Memory Recurrent Neural Network is designed to generate 
forecasts for regulation requirements. Univariate and multivariate clustering 
based on k-means algorithms are also used to generate influential scenarios from 
historical data. Several simulation experiments are carried out to evaluate the 
quality of the proposed stochastic approach using real-world wind farm data. 
Simulation result shows the validity and usefulness of the proposed data-driven 
approaches to handle the uncertainty in regulation requirements. The work 
described in this chapter was  published in [53]. 
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5.1 Introduction 
 
Wind farms are exploring the possibility of adding energy storage systems (ESS) to 
boost their options of participating in the power market to increase their revenues 
[54]. A review of storage technologies and their applications to integrate 
renewable energy generators into power systems can be found in [55].  
Firstly, the problem of optimizing the participation of renewable-based 
generators in day-ahead energy markets in uncertain environments has been 
dealt with extensively in the literature considering with or without storage 
capability. The bidding strategy of a wind and storage power plant in the day-
ahead market is studied in [56]. In this work, the uncertainty linked with available 
wind energy is modeled by using a probability distribution instead of using 
scenarios which leads to a nonlinear problem formulation. Participation of a wind 
farm with ESS in DAM and balance market (BM) under uncertainty in power prices 
and available wind energy is considered in [57]. This work proposes a set of linear 
decision rules to define policies to operate the ESS in real time. In study [58], a 
model predictive control approach and a dynamic programming approach are 
used to optimize the dispatch strategy of a wind-storage power plant participating 
in DAM. Participation of a wind-storage system in DAM and BM is also considered 
in [59]. It considers two ESSs. One is aimed to optimize the wind-storage 
production scheduling with day-ahead forecast data, while the another one is 
used to handle errors in the predictions in real-time operation. A two-stage robust 
optimization approach is used in [60] to optimize a wind-storage plant which can 
sell/buy energy in both DAM and real-time market. Uncertainties in both available 
wind energy and market prices are represented through confidence intervals. A 
stochastic mixed integer linear framework is proposed in [61] to optimize the 
operation of a wind-hydro system which can sell energy in DAM and also through 
bilateral contracts. The developed model includes risk-hedging by considering the 
conditional value at risk. To schedule a generation portfolio incorporating large 
shares of intermittent wind generation and ESS, a chance-constrained approach 
is proposed in [62]. The chance constraint is factorized into a set of linear 
deterministic inequalities to preserve the mixed-integer linear structure of the 
problem. Uncertainty in available wind energy is considered in [63] for both the 
planning and operation of a wind farm with electrochemical storage participating 
in DAM; a two-stage stochastic problem is proposed in [64] to derive the bidding 
strategy of a wind-solar-storage power plant in the DAM under uncertainty in 
renewable generation; the uncertainty affecting a DAM scheduling problem of a 
wind generator is handled in [65] by using chance constraints; and a two-stage 
stochastic problem using data-driven scenarios is presented in [66] as a potential 
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solution to maximize the expected profit of a virtual power plant (VPP) 
participating in day-ahead and balancing markets.  
To increase the income of a wind and storage power plant, a more comprehensive 
participation in the power market may be considered. Thus, for example, a 
stochastic approach is presented in [67] to optimize the participation of a VPP in 
energy and spinning reserve markets and Montecarlo simulations are used in [68] 
to handle the uncertainty in the planning and scheduling problem of energy 
storage systems and renewable energy generators offering congestion 
management services. In this framework, special interest has been devoted to the 
participation in regulation and reserve markets. Wind farms are not usually 
allowed to participate in this market, but this situation is starting to change. Thus, 
recently, some papers have dealt with the problem of scheduling of power 
producers in reserve and regulation markets as well.  
Several papers address the above issue of considering DAM and reserve market 
(RM) simultaneously. Among them, a deterministic mixed integer linear program 
for the energy and reserve scheduling of pumped storage hydro plant is proposed 
in [43]. A stochastic programming framework is proposed in [69] to choose 
optimal energy and reserve bids for a group of storage units. In this work, the 
actual requirements of regulation by the system operator (SO) in the RM is 
modeled by using a constraint limiting it to a maximum value calculated by solving 
a standard stochastic unit commitment problem. Study [70] proposes a two-stage 
robust optimization approach to decide the operation of energy storage units in 
day ahead and reserve markets; a stochastic framework is proposed in [71] to 
optimize the joint operation of a wind farm, photovoltaic generation and energy 
storage devices in energy and reserve markets. In this work, only wind and solar 
generation and market prices are considered uncertain. A day-ahead scheduling 
framework is presented in [72] for a VPP including wind generation and electric 
vehicles participating in a joint energy and regulation reserve markets. Wind 
energy is considered uncertain and probabilities of regulation up and down are 
estimated using a point estimate method. On the other hand, two different 
strategies are compared in [44] to deal with the problem of optimal offering of a 
wind farm in energy and primary reserve markets under wind uncertainty. A 
robust optimization approach is proposed in [73] to decide the optimal 
participation of an integrated community energy system in energy and ancillary 
service markets. Renewable energy generation and market prices are modeled as 
uncertain parameters through confidence intervals. 
When considering the participation in reserve markets, it is crucial to handle an 
important source of uncertainty associated with regulation requirements in real-
time operation. These regulation requirements are defined by the system 
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operator (SO). A very few research has been done to address this issue. For 
instance, several deterministic cases were considered in [74] as a mechanism to 
model such uncertainty; a point estimate based statistical framework is proposed 
to derive a probabilistic distribution of SO requirements in [72]; a method based 
on generating a big number of scenarios for regulation requirements followed by 
an algorithm to select a smaller number of scenarios is proposed in [75] and; a 
statistical method is proposed in [76] to calculate the regulation requirements for 
a specific power system.  
From the above literature, we have observed that very limited effort has been 
made to address the uncertainty associated with the regulation requirements. 
Therefore, in this research, we propose a decisión-making framework to address 
this uncertainty so that the wind farms can run their operation efficiently. More 
specifically, a novel 2-stage continuous convex stochastic programming model is 
developed for a W&SPP participating in DAM and RM. To generate meaningful 
scenarios to be used in our proposed stochastic model, we have developed 
several approaches. At first, a Long Short-Term Memory Recurrent Neural 
Network (LSTM-RNN) is designed to generate deterministic forecasts for SO 
requirements. Univariate and multivariate clustering based k-means algorithms 
are also developed to generate influential scenarios from historical data. The 
concept of perfect information is introduced and presented as an ideal case to 
benchmark the proposed scenario generation approaches. Finally, using 
simulation experiments, the quality of the proposed stochastic approach is 
evaluated for several test-cases using real-world wind firm data. 
The rest of this chapter is organized as follows: Section 5.2  describes the 
proposed stochastic model; Section 5.3 describes the proposed scenario 
generation approaches with simulation results; and lastly, Section 5.4 sets the 
conclusions of this work. 
 
 
 
Nomenclature: 
 
The following sets, parameters and decision variables will be used in our model. 
 

Sets and Subindex: 

 

S  Set of Scenarios . 
T Set of time slots. 
s Subindex for scenarios, s = 1, …., Ns.  
t Subindex for time slot, t = 1,….., T. 
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T

Parameters 

 

 Number of periods. 
 
  Duration of each period. 
 
 Available wind power in time t. 
  

Initial energy stored in the ESS. 
  
 Charging efficiency of the ESS. 
 

Discharging efficiency of the ESS. 
 
 
 Maximum energy stored in the ESS 

. 
 
 Maximum power to/from ESS. 
  

Minimum state of charge of ESS 
 

 Energy price in the DAM. 
 

,ˆbm up

t
  Energy price of deviation up BM 

 
,ˆbm dw

t
  Energy price of deviation down in 

BM 
bm  Correction factor of deviation 

prices in BM 
 

Corrected energy price of 
deviation up in BM. 

 
Corrected energy price of 
deviation down in BM 

 
Auxiliary parameters.  
 

 Price of power reserve. 
 
 Energy price under regulation up. 
 
 Energy price under regulation 

down. 
 

 
Price of energy not supplied for 
regulation up.  

 
 Price of energy not supplied for 

regulation down. 
 
 Ratio of reserves required for 

regulation up. 
 
 Ratio of reserves required for 

regulation down . 
 

Ratio between reserve up and total 
reserve.   

 

sN   Number of scenarios 

 

s   Probability of occurrence of 

scenario s. 
 
Decision variables 
 

Wind power used in time t. 
 
 Energy stored in time t. 
 
 Power entering the ESS in time t. 
 
 Power delivered by the ESS in time 

t 
 
 State of charge of ESS in time t. 
 
 Power to/from W&SPP in time t 

and scenario s. 
 
 Power offered in the DAM for 

every hour of day D. 
 
 Power actually delivered/taken in 

time t in the DAM. 
 

Participation in the BM in every 
scenario s. 
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Deviation up in BM in every 
scenario s. 

 
Deviation down in BM in every 
scenario s. 

 
 Total power committed in the RM. 
 

Power committed for regulation 
up. 
 
 Power committed for regulation 
down. 
 
Energy required by SO for reg. up 
in every scenario s. 

 
 Energy required by SO for reg. 

down in every scenario s. 
 
 Energy actually offered for reg. up 

in every scenario s. 
 
 Energy actually offered for reg. 

down in every scenario s. 
 

Deviation in regulation up in every 
scenario s. 

 
 Deviation in regulation down in 

every scenario

 

5.2 Description of the model. 
 
The proposed optimization problem aims at maximizing the net income of the 
W&SPP participating in both DAM and RM, as already explained in chapter 4, 
considering the uncertain environment. Therefore, the mathematical model 
should be able to handle this uncertainty in the input data. A two-stage stochastic 
approach is chosen to deal with this situation and a set of scenarios is proposed 
to handle the uncertainty linked with the available wind energy and the regulation 
requirements by SO in every hour of day D. These scenarios represent plausible 
realizations of those uncertain parameters with an associated probability of 
occurrence. Under this approach, two kinds of variables appear: first stage and 
second stage variables. First stage variables are associated with the decisions to 
be made in day D-1 under uncertainty. These decisions are also called here-and-
now decisions in the optimization literature [14]. On the other hand, second stage 
variables are associated with the decisions that are made in day D provided that 
first stage decisions are already made. These decisions are also known as wait-
and-see decisions in the optimization literature. Thus, the two-stage stochastic 
optimization problem is solved in day D-1 when the first-stage decisions are to be 
made. The optimization problem finds the best first stage decisions by considering 
the values of second stage decisions for all scenarios.  
Here, we make a price taker assumption, which means the agent is not able to 
influence the market prices no matter how much power/energy it offers.  
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In the following subsections 5.2.1 and 5.2.2, the proposed model is described. It 
uses a convex two-stage stochastic approach to model the participation of a 
W&SPP in power markets: DAM, RM, and BM. 
 

5.2.1 Objective function 
 

The objective function will maximize the net income of the operation of the 
system participating in DAM, RM, and BM. Equations (50) and, (51) define the 
income from the participation in the DAM and the RM respectively from a 
deterministic point of view. The participation in the DAM implies the participation 
in the BM to handle the deviations with respect to the commitments acquired in 
the DAM.  
  
 

, ,, ,ˆ( )dam dam bm up bm dw

t t t t

t t t

bm up bm dw

t t tIDAM Pl             (50) 

          
, , , ,

, , , ,

, ,

ˆrm rm rm up rm up rm dw rm dw

t t t t t t

t t t

rm up rm up rm dw rm dw

desv t t desv t t

t t

IRM P E E

D D

  

 

     

   

  

 
  (51) 

         
Thus, the net income in DAM (IDAM) comes from the energy committed for 
selling/buying in every hour of day D and the participation in the BM. 
It is important to note that in the Iberian market, as exposed in chapter 2, the 
prices in the BM have to follow equations (52) and, (53). In this case, a situation 
may arise, where there are no penalties for deviation with respect to the 
commitments acquired in DAM. From our point of view, this situation should be 
avoided and agents should be encouraged to bid as accurately as possible in the 

DAM. To force this behavior, a parameter (0,1]bm  is defined to correct the 

BM prices as to the equations (54) and, (55). This means that deviation up price 
will be lower than that found in the market data, and the deviation down price 
will be higher. Thus, an actual penalty will always appear if the power agent does 
not follow the commitments acquired in the DAM. 
 

,ˆbm up

t

dam

t          (52) 
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,ˆbm dw

t

dam

t          (53) 

                                                                     

 , ,ˆ 1bm up bm up

t t

bm dam

t            (54) 

                                                              

 , ,ˆ 1bm dw bm dw

t t

bm dam

t            (55) 

    

In this problem, the time step considered is one hour, so the parameter 
tl will be 

omitted in the objective function for the sake of simplicity from now onwards. 
As we said, available wind energy and regulation requirements by SO are not 
known by the W&SPP when the decision-making problem is to be solved. To 
handle this uncertainty, a two-stage stochastic problem is proposed. The concept 
of stochastic programming and in particular, a two-stage approach was 
introduced in section 3.2.2.  
Commitments to participate in DAM are modeled as first stage decisions and 
deviations, i.e., participation in the BM are modeled as second stage decisions. 
The second-stage decisions depend on the first-stage decisions and the 
considered scenarios modeling plausible realizations of the uncertain parameters.  
Also, as described in the equation (51) the net income from RM comes from the 
regulation band committed in day D-1 (first stage decision) and, the actual energy 
supply for regulation in day D (second stage decision), which depends on the 
realization of the uncertain parameters as well. 
Thus, the objective function (56) for the two-stage stochastic problem considers 
the sum of the income related to the first-stage decisions plus the expected value 
of the net income related to the second-stage decision for all the considered 
scenarios.  
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    (56)          
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To avoid the use of binary variables in the model, utilization of convex functions 
to model the participation in the balancing market is proposed in [37]. Following 
the same procedure, we can rewrite the objective function (56) as a minimization 
problem. Thus, the deviation with respect to the commitments acquired in DAM, 
which is equivalent to the participation in the BM, is defined according to equation 
(57) and deviations up and down according to equations (58) and, (59).  
 

, ,
ˆbm dam dam

s t s t tP P          (57) 

                                                                      

 ,

, , [,0 ]bm dw bm bm

s t s t tmax 
         (58) 

                                                          

 ,

, , [,0 ]bm up bm bm

s t s t tmax 
         (59)  

                                                         
The following equation (60) shows the resulting objective function: 
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   (60)        

The objective function (60) is a convex function if equation (61) holds.  
 

, ,bm dw bm up

t t
          (61)   
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2

bm dw bm up
bm t t
t

 



        (62) 

                                                                
, ,

2

bm dw bm up
bm t t
t

 



        (63) 

                                                                 
In this case, by applying transformations (62) and, (63) the objective function can 
be written as (64), which is more convenient to be handled by convex optimization 
solvers [37]. This transformation was explained in detail in Chapter 4.  
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5.2.2 Model constraints 
 

The following set of constraints define the feasible set of the optimization 
problem. All the equations in this section are defined for all time steps and for all 
scenarios. 
  

,t T s S     
 
Equation (65) sets the amount of energy stored in the ESS in every time step as a 
function of the initial conditions, the power entering and leaving the ESS and the 
efficiency of charging and discharging processes 
 

, ,

0

1 1

1t t
ess ess ess in ess out

t t in t

out

E E l P l P 

 


 

           (65) 

 
Constraint (66) ensures the maximum allowable limit for wind power. The right-
hand side of this constraint is one of the parameters affected by the uncertainty 
and modeled by scenarios.  
                                                   

, ,
ˆwind wind

s t s tP P          (66) 

 
Also related with the ESS, constraint (67) requires to have the same energy stored 
at the beginning and at the end of the period under study (one day in our case); 
and (68), (69) and, (70) limit the maximum and minimum energy stored in the ESS, 
while constraints (71) and, (72) limit the maximum power that can be exchanged 
by the ESS. 
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t tSOC E E        (69) 

                                                                
min

tSOC SOC        (70) 

                                                                    
,ˆ ess out ess

tP P           (71)       

                                                              
,ˆ ess in ess

tP P            (72)   

 
Constraint (73) defines the power balance in the W&SPP and (74) ensures some 
bounding constraints.           
                                                        

, ,

, ,

wind ess out ess in

s t s t t tP P P P         (73) 

                                                   
, ,; ; 0ess out ess in ess

t t tP P E        (74) 

 
The set of constraints (75) - (86) deal with the participation in the reserve market. 
Equations (75), (76) and, (77) define the regulation band that can be offered by 
the W&SPP. In this work, it is supposed that just the ESS may be used for 
regulation requirements, constraints (76) and (77), although renewable 
generators, under certain requirements, are starting to be allowed to participate 
in adjustment markets in some countries.  
                                                       

, ,ˆ ˆ ˆrm rm up rm dw

t t tP P P         (75) 

                                                                  
,ˆ rm up ess

tP P         (76) 

                                                                       
,ˆ rm dw ess

tP P         (77) 

 
It is also needed to set the ratio between the regulations up and the total 
regulation band offered. This ratio must follow the ratio asigned for the entire 
system defined by equation (78).      
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P
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Constraints (79) and, (80) set the amount of energy actually required by SO for 
regulation tasks. Regulation requirements are also parameters affected by the 
uncertainty and modeled by scenarios.      
                                                                  

, , ,

, , ,
ˆ ˆrm up rm up rm up

s t reg t s t tE l P         (79) 

                                                        
, , ,

, , ,
ˆ ˆrm dw rm dw rm dw

s t reg t s t tE l P         (80) 

 
Constraints (81) and, (82) deal with the actual energy supplied by W&SPP for 
regulation tasks while constraints (83) and, (84) define the deviations in the RM. 
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Lastly, Constraint (85) ensures the power balance between the system and the 
power market and constraint (86) establishes some nonnegativity requirements. 
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5.3 Case study 
 
The goal of this section is to describe and evaluate the proposed stochastic 
approach. For that purpose, in the first subsection, a set of methods to handle the 
uncertainty associated with the available wind energy and regulation 
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requirements by SO is presented. These methods are scenario generation 
procedures, which will generate influential scenarios to be fed into the proposed 
stochastic optimization framework. In the second subsection, the concept of 
perfect information is introduced and presented as an ideal case against which 
the stochastic solution is evaluated. Lastly, the results of several simulations are 
presented and discussed. A real-world case study is considered for a wind farm 
located in Northwestern Spain, Sotavento experimental wind park , and for the 
Iberian electricity market. 
 

5.3.1 Methods to handle uncertainty 
  
The stochastic approach presented in section 5.2 needs the definition of scenarios 
which represent the uncertainty in some parameters of the model. In particular, 
available wind energy and regulation requirements by SO are considered 
uncertain in this model while market prices are considered as known parameters 
in this work. With this aim, several ways of handling lack of information (i.e., 
uncertainty) by using data-driven techniques are proposed. In one hand, 
uncertainty about available wind energy is handled by defining scenarios from the 
available forecast data. This procedure is explained in subsection 5.3.1.1. On the 
other hand, uncertainty concerning regulation requirements by SO is handled 
from the historical data because there is no forecast available. Four approaches 
are presented to handle the uncertainty about the regulation requirements as 
follows: 
 

 First, a neural network is used to build a deterministic forecast of the 
regulation requirements.  

 Second, a univariate clustering procedure is applied to classify the 
historical hourly regulation requirements and two assumptions are made 
to expand this hourly information to build daily scenarios.  

 Third, a multivariate clustering approach is used to build daily scenarios 
in a more straightforward way.  

 Lastly, a look-back procedure is presented to consider as a set of scenarios 
the most recent events of regulation requirements by SO. 

 
Thus, a set of scenarios associated with the available wind energy and SO 
regulation requirements will be defined and fed into the stochastic optimization 
problem. 
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Figure 31.- Definition of scenarios from probabilistic 
forecast of available wind energy. 

5.3.1.1 Available wind energy scenarios 
 
Under a stochastic approach, the probabilistic forecast of available wind energy is 
of paramount importance to handle the uncertainty associated with wind energy 
production. Several papers have dealt with the problem of forecasting the 
available wind energy in a wind farm. Just to name a few, the work presented in 
[77] presents an autoregressive model; an innovative hybrid model based on 
neural networks is proposed in [78] to establish wind speed interval forecasts; 
while that recent advances in deep learning techniques are used in [79]. A method 
to generate statistical scenarios of wind generation based on the statistical 
analysis of the prediction errors is proposed in [80]; more recently, a combination 
of machine learning and quantile regression is proposed in [81] to provide a 
multistep probabilistic forecast of 10-minutes intervals of wind generation; and a 
deep learning based ensemble approach is proposed in [82]. 
In this work, this problem is not dealt with and the forecast for available wind 
energy (AWE) in every hour of day D is provided by the WF operator as a set of 
time series instead. This data is provided on a percentile basis. Therefore, each of 
this time series corresponds to a set of hourly values defining an upper bound on 
the actual available wind energy with a given probability. For example, according 
to the 75th percentile forecast, the actual wind energy available should be less 
than the p75 curve with a 75% probability as shown in Figure 31. 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

. 
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If the p75 curve is considered, according to the definition given above, available 
wind energy will be less than that curve with a probability of 0.75. This is 
equivalent to say that available wind energy will be more than that curve with a 
probability of 0.25. Thus, under a conservative approach, this curve can be 
considered as the right-hand side of the equation (66) for the scenario p75. 
Analogously, another scenario may be defined as the p50 curve. The last scenario 
is defined as the p25 curve with a probability of 0.25. In this case, this is an 
optimistic approach because we are considering the upper values of the complete 
set as the available wind energy. In Figure 31, this idea to translate a probabilistic 
forecasting into scenarios is shown. 
The available dataset for available wind energy in day D is made up of five curves: 
p90, p75, p50, p25 and, p10; corresponding to percentiles 90, 75, 50, 25 and 10. 
From this dataset, three cases are considered as follows: 
 

1. Firstly, six scenarios are generated from the available probabilistic 
forecasting (AWE_STOCHASTIC_6) 

2. Secondly, three scenarios are generated from curves p75, p50 and, p25 
(AWE_STOCHASTIC_3). 

3. Lastly, the p50 curve is considered as deterministic forecasting 
(AWE_DETERMINISTIC). 

 
To build the scenarios in the first case, a conservative approach is followed. As an 
example, let us consider the p90 curve. According to the definition given above, 
the wind energy available will be less than that curve with a probability of 90%, 
which is the same as saying that wind energy available will be more than that 
curve with a 10% probability. Thus, this curve can be considered as the right-hand 
side of the equation (66) for the scenario p90 under a conservative approach. The 
same idea is used to define a set of 6 scenarios. In a less conservative approach, 
3 scenarios are defined only considering p75, p50 and, p25 curves. The 
probabilities assigned to those scenarios are shown in the right figure of Figure 
32. 
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Figure 32.- Probabilities of considered scenarios 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lastly, a deterministic case is defined by considered as the only forecast available 
that corresponding to the curve p50. 
 

5.3.1.2 Handling uncertainty for regulation requirements by SO 
 

In this subsection, several approaches to deal with the uncertainty for regulation 
requirements by SO are proposed and discussed. 
 

5.3.1.2.1 Deterministic forecast of regulation requirements 
 
The first approach to deal with uncertainty for regulation requirements from SO 
both upward and downward is to forecast hourly values for day D based on the 
values taken by these parameters in the previous days. To do this, time series 
forecasting techniques are used. Recently, among all the techniques available to 
deal with the time series forecast, recurrent neural networks (RNN) are found to 
be effective [83]. In particular, a Long Short-Term Memory Recurrent Neural 
Network (LSTM-RNN) [35] demonstrated its ability to overcome the problem of 
vanishing gradient during the training process of RNN over long-term sequences 
[84]. This advantage will allow using longer periods as input data for the 
forecasting purposes. In particular, for our problem, when decisions are to be 
made, there is no available forecast about how much of the committed regulation 
up and down will be required by the SO in real time. To deal with this lack of 
information, an LSTM-RNN is proposed to generate forecasts for regulation up 
and another LSTM-RNN is used to forecast regulation requirements downward. 
These LSTM-RNNs are trained by using hourly data of one year. Once the model 
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Day D

Day D-1

Figure 33.- Forecasting of regulation requirements up by a LSTM-RNN 

is trained, the forecast for day D is performed by feeding the last data available 
(defined as look-back data) into the model. The LSTM-RNNs are implemented 
using the machine learning library Tensorflow [85]. Some of the hyperparameters 
used for the neural network are summarized in the following Table 3. 
One example of forecasting requirements for regulation upward can be seen in 
the following Figure 33. In this figure, the green dotted line represents the data 
used to make the prediction, the light blue line represents the actual data for day 
D and the solid blue line represents the forecasted data by the neural network. 
Forecasting is performed at 9 a.m. in day D-1 (red dot) for a time span including 
the rest of day D-1 and day D. The vertical red line shows the beginning of useful 
forecasting corresponding to day D. As it can be seen, the forecasted time series 
cannot follow the random extreme values, both when it becomes 0 or 1. This is 
due to the high randomness of the regulation requirements by SO.  
 

Table 3: Hyperparameters used for training in the LSTM-RNN. 
 

Type LSTM – RNN 

Number of layers 3 

Internal Size of the LSTM Cell 128 

Optimizer ADAM 

Error function Mean Square Error 

Implementation TensorFlow - Python 
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Figure 34.- Left: Clustering of hourly regulation requirements data. Right: 
Centroids and associated probability of considered classes. 

5.3.1.2.2 Scenarios based on univariate clustering 
 
The second approach to handle the uncertainty associated with the regulation 
requirements by SO is to find a discrete set of regulation requirements which may 
be representative of the values taken during one year of historical data. To 
perform this, a univariate k-means clustering algorithm [86] is proposed. The 
application of such a procedure is aimed to get several clusters, their respective 
centroids and their probability of occurrence. The results are shown in Figure 34; 
it shows that for more than 50% of the hours, the regulation requirements by SO 
are small both for regulation up and down (class 0). Around 20% of times the SO 
requires a higher value of regulation down while requirements down are low 
(class 2). Lastly, around 27% of times SO requires a higher value of regulation up 
while regulation down is low (class 1). This clustering process provides useful 
hourly information.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, the objective is to define scenarios for regulation requirements for day 
D, i.e., 24 hourly values are needed. Two different approaches are proposed to 
build such scenarios which are discussed below. 
The first approach to generate scenarios from this clustering is based on 
considering three scenarios every day, which are characterized by the values and 
associated probabilities defined above. This means that in each scenario, the 
regulation requirements will be the same in the entire 24 hours, corresponding to 
each of the computed classes. The probability of each of these scenarios will be 
considered as the probability of occurrence of the class defining each scenario as 
shown in Figure 35. This approach will be referred to as univariate-A during our 
simulation.  
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Figure 35.- Scenarios as to Univariate-A case. 

Figure 36.- Scenarios as to Univariate-B case. 

 
 
 
 
 
 
 
 
 
The second approach to generate daily scenarios from the univariate clustering is 
by assuming that the yearly pattern of regulation requirements is replicated in a 
daily basis. Thus, the procedure starts by generating random combinations of the 
three computed classes for the 24 hours of a day D. This combination needs to 
follow the calculated probability of ocurrence of the yearly data. In other words, 
the probability of ocurrence of every class in the generated scenario must be 
equal to the probability of ocurrence of the same class in the yearly set of 
historical data. The main goal of the scenario generation process is to build daily 
patterns of regulation requirements in which each class has a probability of 
ocurrence equal to the probability specified by the cluster for one year data. 
Lastly, a random subset among all the daily scenarios is chosen. All the generated 
scenarios are considered equiprobable. This approach will be referred to as 
univariate-B and is shown in the following Figure 36. 
   
 
 
 
 
 
 
 
 
 

5.3.1.2.3 Scenarios based on multivariate clustering 
 
In this case, the scenarios are generated by following a multivariate approach. The 
idea is to perform a clustering of n-dimensional data points [87]. In our problem, 
it means that daily scenarios are generated directly from daily data. A k-means 
clustering algorithm is also used in this case.  
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Thus, the way to build scenarios for regulation requirements for the whole day D 
is to perform a clustering of multidimensional vectors. These vectors represent 
the hourly values of regulations requirements up and down. The resulting vector 

belongs to 48R after concatenating two vectors of 24 values each. One year of 
daily vectors is used as the original discrete distribution. The goal of the clustering 
is to find a set of mass points that minimizes the probabilistic distance to the 
original distribution. Each of these points in the multidimensional space will be 
considered as a scenario. The probability of occurrence of that scenario is 
computed as the ratio between the number of elements in each cluster and the 
total number of points in the original distribution. 
In particular, ten scenarios are generated as shown in the following Figure 37, and 
the probability of each of them is calculated. The clustering allows us to visualize 
patterns of the uncertain parameters. It can be observed from the clustering 
process that during the first hours of the day and the afternoon, the requirements 
for regulation down are small. By contrast, it is during morning and evening when 
the requirements for regulation upward are small. 
 

5.3.1.2.4 Scenarios based on look-back procedure 
 
The final approach to build scenarios to handle uncertainty is a look-back 
procedure. Thus, the daily data for the last N days before D-1 are considered as 
scenarios to perform the optimization for day D. A look-back period of one week 
is considered, meaning that seven scenarios which correspond with the actual 
data for regulation requirements of seven days before D-1 are fed into the 
stochastic model with an assumption of equiprobability. 
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Figure 37.- Multivariate clustering scenario generation for regulation 
requirements. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3.2 Result 
 
A real-world example is used to evaluate the proposed techniques discussed 
above to handle the lack of information associated with the available wind energy 
and regulation requirements by SO. To evaluate the quality of the solution of the 
stochastic problem, two situations will be compared. In one hand, under a perfect 
information (PI) hypothesis, decisions are made as if the actual values of uncertain 
parameters for day D were known. On the other hand, the real information (RI) 
hypothesis will consider the actual data available on day D-1 to solve the problem. 
This procedure is similar to that used in section 4.5. 
The wind farm of Sotavento, located in Northwestern Spain is chosen [2]. The WF 
operator kindly provided data associated with the available wind energy forecast. 
This WF does not have storage capability. We have used an ESS of 2 MW / 2 MWh 
for this study. Data concerning power market prices and parameters were 
downloaded from the Spanish system operator website [1]. All the cases 
presented above are implemented with MATLAB and modeled with CVX [50]. 
Several simulation experiments are carried out for a period of 2 months for 
several test-cases to estimate the achievable net income.  
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The details about the considered scenarios are summarized in the following Table 
4 and Table 5. 
The results of all the performed simulation experiments are summarized in Table 
6. Firstly, a simulation experiment is carried out under a perfect information 
hypothesis for both available wind energy and regulation requirements. Actual 
data for uncertain parameters are fed into the model and an upper bound on the 
achievable net income by the W&SPP is calculated.  
 
Table 4: Scenarios considered to model uncertainty in available wind energy. 
 
 
 
 
 
 
 
Table 5: Scenarios considered to model uncertainty in regulation requirements. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first column and the first row of Table 6 show the results when only one of 
the uncertain parameters is considered as unknown. Thus, the first column 
considers perfect knowledge of available wind energy and models the uncertainty 
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linked with the regulation requirements with several sets of scenarios. On the 
other hand, perfect knowledge of regulation requirements is supposed to be 
known in the first raw.  
The rest of the simulations consider the uncertainty in both available wind energy 
and regulation requirements. The best results are always achieved when three 
scenarios are used to model the available wind energy. This is because of the less 
conservative approach used to generate them. The net income decreases when 
just one scenario is considered by matching the p50 forecasting curve (as if it was 
a deterministic case). The simillar phenomenon is observed when six scenarios 
are used. For example, the net income decreases by 5.3% compared to PI situation 
when three scenarios are considered.  
 

Table 6: Net Income (€) over the simulation period (2 months) under several 
combinations of scenarios. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have also observed from our simulation experiments that stochastic cases to 
model regulation requirements performed better than the deterministic case. 
That happens regardless of any approach used to define the scenarios: univariate 
A, univariate B, multivariate or Look-Back. The difference between them as to the 
net income achievable is negligible.  
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Net Income % Net Income % Net Income % Net Income %

Perfect Information 289346 67.2% 0 0.0% 113922 26.5% 27319 6.3%

LOOK-BACK 271745 66.8% -6359 -1.6% 113943 28.0% 27397 6.7%

UNIVARIATE - A - 3 262473 64.5% 3345 0.8% 113926 28.0% 27432 6.7%

UNIVARIATE - B - 9 257489 63.4% 7258 1.8% 113861 28.0% 27538 6.8%

LSTM 261156 64.5% 1977 0.5% 113943 28.2% 27397 6.8%

MULTIVARIATE 262539 64.4% 3550 0.9% 113943 28.0% 27397 6.7%

RANDOM 271184 67.7% -13270 -3.3% 113854 28.4% 28795 7.2%

404692

407392

400506

NI

430549

406689

407139

406110

DAM BM REG. BAND REG. REQU. TOTAL

Table 6 also provides insights into how to evaluate where the W&SPP should focus 
to improve its results. If considering the best approaches, it can be seen that there 
is not too much margin to improve by trying to get a better modeling of the 
uncertainty for regulation requirements. On the contrary, efforts should be made 
on improving the forecast of available wind energy. For example, in the 
multivariate-10scen /AWE-STOCHASTIC-3 simulation, the net income achievable 
is 407392 €. The net income would rise to 409160 € if we consider perfect 
knowledge of regulation requirements, whereas the net income would be 420227 
€ if the operator would know the actual available wind energy. By splitting the 
total net income in the net income achievable in each market, the strategy of the 
W&SPP could be better understood. In Table 7, the net income achievable in every 
market is shown for several sets of scenarios associated with the regulation 
requirements. As to the available wind energy, all the cases shown consider three 
scenarios (AWE_STOCHASTIC_3). 
The W&SPP always commits a similar amount of power in the reserve market. 
Similarly, it always provides a similar amount of energy for regulation no matter 
the scenario set considered for the simulation. This may be different under 
another prices or regulation of the market. Once these two conditions are fixed, 
depending on how accurate the W&SPP would model the uncertainty, it would 
participate more or less in the deviation market.  
 
Table 7: Influence of every market in the net income under several scenarios to 

model regulation requirements uncertainty. 
 
 
 
 
 
 
 
 
 
 

5.4 Conclusions 
 
A two-stage stochastic convex model is developed to evaluate the participation of 
a W&SPP in both DAM and RM. This model avoids the use of binary variables and 
it is successfully applied to optimize the operation of such a plant seeking to 
maximize the net income of the system. Several simulation experiments were 
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designed and carried out considering different approaches to model the 
uncertainty in the available wind energy and regulation requirements by SO when 
the decisions are to be made by the energy planner. A data-driven approach was 
considered to handle the uncertainty due to lack of information. While raw 
forecast data for available wind energy was translated into a set of meaningful 
and useful scenarios, historical data about regulation requirements was used to 
train an LSTM-RNN and perform a clustering to generate scenarios using both 
univariate and multivariate analysis. While an LSTM-RNN based forecast of 
regulation requirements by SO provides satisfactory results, a scenario-based 
approach outperforms all the considered approaches. Because of the highly 
random behavior of regulation requirements, the associated uncertainty with this 
parameter is better handled by a scenario-based approach. With the scenario 
based approach, the reduction of net income (cost of uncertainty) ranges 
between 6-8.5% when compared to the net income under the PI hypothesis. From 
the reduction of net income perspective, the importance of scenario generation 
technique is clear and the reduction of net income in the worst-case scenario is 
higher than that of the best-case scenario by a factor of two.  
As to the operation of the W&SPP, the participation in the reserve and regulation 
market is a priority. Therefore, the system will have to deviate in the DAM, i.e., 
participate in the BM, in an amount depending on how the uncertainty has been 
modeled. The scenario generation approaches, especially multivariate and LOOK-
BACK show an efficient way to model the uncertainty of regulation requirements 
by SO. The results obtained are very close with respect to the case where there is 
a perfect information for these requirements. Therefore, in both cases, W&SPP 
should focus on improving the available wind energy forecast. 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 



 

 
 
 
 

CHAPTER 6 
 
 
 

6 A novel data-driven scenario 
generation process. 
Application to a wind and 
storage power plant 
participating in the pool 
market. 

 
 
 
In this chapter, the problem of maximizing the net income of a Wind and Storage 
Power Plant (W&SPP) participating in the pool market is formulated as a two-
stage convex stochastic program. A novel hybrid approach using multivariate 
clustering techniques and the recurrent neural network is used to derive scenarios 
to handle the uncertainty associated with the energy price. Lastly, a simulation 
experiment is carried out to show the effectiveness of the proposed methods using 
a real-world case study. This chapter is based on [88]. 
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6.1 Introduction: 
 
Generation from variable renewable energy resources has increased their 
penetration in the power market worldwide. Wind farms and solar photovoltaic 
plants have reached the status of a mature technology. The main problem of 
these generators participating in pool markets (PM) is the time gap that exists 
between the time when the commitments of selling/buying energy in the markets 
are made and the actual realization of those commitments. This is not a problem 
for conventional generators, however, it is a real challenge for variable renewable 
resources generators (VRRG), like solar plants and wind farms. To better handle 
the participation of VRRG in the pool market, day-ahead market (DAM), intraday 
market (IDM) and balancing market (BM) are considered separately [4]. The first 
two markets run sequentially. IDM is run after DAM and it is meant to give the 
VRRG the possibility of updating generator commitments when more accurate 
information about uncertain parameters is available. The last one, the BM, gives 
the possibility of buying/selling energy to compensate for the deviations in real 
time. 
The decision-making problem of defining the participation of a VRRG in the pool 
market can be formulated as an optimization problem under uncertainty, i.e, 
several parameters of the problem are not known when the decisions are to be 
made. Among the existing approaches to handle a decision-making problem 
under uncertainty, the most widely used technique is a stochastic programming 
approach. When dealing with uncertainty using a stochastic approach, a set of 
scenarios need to be defined to model the uncertain parameters. Each of these 
scenarios should correspond to a feasible realization of the uncertain parameters 
and an associated probability of occurrence.  
The stochastic approach has been used to optimize the participation of power 
generators, both the traditional and renewable resource-based, in the energy 
pool markets. In particular, several papers are available in the literature 
considering the participation of power producers in the day-ahead market (DAM) 
and real-time or balancing market (BM) under uncertainty. For example, a 
pumped-hydro system is proposed as a storage system to cope with the variability 
of the generation of a wind farm in [89], where a two-stage stochastic approach 
is presented to optimize the expected profit of the system participation in the 
day-ahead and real-time markets. Scenarios for available wind energy are 
considered as input data and scenarios for day-ahead prices are generated 
through input/output hidden Markov model and prices in the real-time market 
are considered as known. On the other hand, a Virtual Power Plant with a Wind 
farm is considered in [66]. In this case, a two-stage stochastic mixed integer linear 
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program is proposed to maximize its expected profit when participating in the 
day-ahead and balancing markets. Available wind energy and market prices are 
considered uncertain and modeled by scenarios. Twenty-five days of data, both 
for available wind energy and market price, are chosen to generate equiprobable 
scenarios. A two-stage stochastic mixed integer linear program is also used to 
optimize the participation of a hybrid wind-solar plant in DAM under uncertainty 
in market price, available wind and solar energy [64], where scenarios are defined 
by selecting a number of daily actual data. To optimize the participation of an 
Independent Power Producer (IPP) in day-ahead and real-time markets, a two-
stage stochastic approach is proposed in [90], where it groups a wind farm and 
traditional generation as thermal and hydro plants. Their objective was to 
maximize the profit of the IPP while ensuring a participation of the wind farm as 
high as possible. Uncertainty in wind generation and power prices were modeled 
by scenarios. A two-stage robust optimization approach is used in [60] to optimize 
a wind-storage plant which can sell/buy energy in both DAM and real-time 
market. Uncertainties in both available wind energy and market prices were 
represented through confidence intervals. 
However, a comprehensive participation in the pool market including the IDM has 
received limited attention in the literature. A model to evaluate the participation 
of a hydropower plant in DAM, IDM and BM is presented in [91] addressing 
German market whereas a rolling horizon optimization framework is proposed in 
[92] to optimize the participation of a wind farm in DAM and IDM. Only available 
wind energy is considered uncertain and modeled by scenarios while electricity 
prices are considered as known. A strategy to participate in Elbas intraday market 
is presented in [93] where the DAM prices are certainly known and just balancing 
prices are forecast by using a statistical regression-type model. 
As already stated, a stochastic approach needs a set of scenarios to be defined. 
There are several approaches available in the literature to generate scenarios. 
One approach is to consider a deterministic forecast, also called point forecast of 
the uncertain parameter as a single scenario. In particular, several techniques 
were employed to perform a point forecast of market prices. A feedforward 
neural network is used to predict DAM price in [94] while a deterministic 
framework to forecast DAM price is proposed in [95] by using clustering 
techniques over the original dataset and deploying dedicated feedforward neural 
networks for each cluster. A neural network based forecast of intraday market 
prices is presented in [96], where the explanatory variables are exposed in detail 
and a conventional Multi-Layer Perceptron neural network is applied to perform 
a point forecast of prices in the intraday market. A forecast of the daily average 
electricity price in the Nord Pool Market is presented in [97], where univariate and 
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multivariate forecast models are presented and compared. Lastly, a point forecast 
for day-ahead market prices in several countries is performed in [98], where a 
lasso estimation technique is proposed to capture the intraday dependency 
among hourly prices. 
Another way to handle the uncertainty is to define a set of feasible scenarios for 
the uncertain parameters. Several techniques have been used to define scenarios 
and their associated probability of occurrence. For example, scenarios chosen 
directly from historical data are used in [64]. More complex scenario generation 
methods based on autoregressive moving average (ARMA) and autoregressive 
integrated moving average (ARIMA) models are used in [99], [75] and [100], 
whereas scenarios to model uncertainty in solar and wind power generation and 
power prices are generated by Montecarlo simulation in [101].  
A more recent approach that is used to define scenarios is related with 
multivariate probabilistic forecasting techniques. For example, a feedforward 
neural network is used in [102] to perform a point forecast of the generation 
capacity of a photovoltaic solar generator. This forecast is used, along with other 
variables, to perform a probabilistic forecast by using an analog ensemble 
procedure. A probabilistic price forecast for the day-ahead and intraday markets 
is performed in [103]. It uses a set of explanatory variables and statistical learning 
algorithms. In particular, linear quantile regression and gradient boosting trees 
algorithms were proposed in their work. The result is a set of quantiles between 
5% and 95% with a 5% increment. 
A set of explanatory variables and quantile regression are used to perform a 
probabilistic forecast of wholesale electricity price in the UK electricity market in 
[104]. A sensitivity analysis of how the fundamental explanatory variables 
influence the price is also presented. Recently, in [105] a comprehensive review 
of probabilistic forecasting techniques applied to forecast electricity price is 
presented. 
From the literature review, we see that although the optimization of VRRG 
participation in DAM has been considered in the literature, a limited attention has 
been given to consider a comprehensive participation in the energy pool market, 
i.e., simultaneously consider DAM, IDM, and BM. On the other hand, several 
techniques for defining scenarios have been presented. Among them, the recent 
probabilistic forecasting techniques show a promising result to develop data-
driven scenarios, however, novel approaches are needed to obtain meaningful 
scenarios from a stochastic programming point of view.  
In this work, a decision-making problem to deal with the problem of a wind farm 
participating in the pool market is considered. While this wind farm is considered 
to have an energy storage system (ESS), the participation in the IDM is also 



Stochastic W&SPP in Pool Market  97 

 

 
 

explicitly considered with the DAM and BM to allow the operator not only to be 
able to perform a time-based arbitrage strategy but also a market-based arbitrage 
between DAM and IDM. The problem is clearly affected by the uncertainty 
associated with input data: available wind energy and market prices are not 
known at the time of making a decision. Furthermore, generating influential 
scenarios to capture the real-world uncertainty associated with the price is also a 
key challenge, which is not addressed well in the literature as well. Therefore, in 
this chapter, a new two-stage convex stochastic programming model is proposed 
to optimize the participation of a W&SPP by simultaneously considering DAM, 
IDM, and BM in the energy pool market. To generate influential scenarios to be 
fed into the stochastic problem, we proposed a hybrid novel data-driven scenario 
generation framework by using supervised and unsupervised machine learning 
techniques. More specifically, a multivariate clustering technique is proposed to 
find representative patterns of daily market price and a recurrent neural network 
is designed to extract information from the temporal sequence of those daily 
patterns to extract a set of scenarios, which can truly represent the underlying 
uncertainty. 
The rest of this chapter is organized as follows: section 6.2 describes the system 
and power market under study; section 6.3 describes the proposed stochastic 
model; section 6.4 describes the proposed methods to generate scenarios to be 
fed into the stochastic problem; section 6.5 analyzes a real-world application of 
the developed approach and lastly, section 6.6 includes concluding discussion. 
 

6.2 Description of the problem 
 
A Wind and Storage Power Plant (W&SPP) is also considered in this chapter. This 
power agent will be allowed to participate in the pool market, i.e., day-ahead 
market (DAM), intraday market (IDM), also known as adjustment market, and 
balancing market (BM).  
Let us consider that the W&SPP participates in the pool market in a day D. The 
first step is to participate in the DAM. This market runs under a bidding process 
through which the power agents commit to sell/buy a certain amount of energy 
at every hour in the day D. The energy prices are not known at the time of bidding 
and they are known after the market clearing process is over in the morning in 
day D-1 when all the bids from all the generators are revealed. The participation 
in the DAM is challenging for a W&SPP. The W&SPP operator has to submit its 
bids for participation in the DAM one day in advance with a high degree of 
uncertainty associated with the important parameters such as available wind 
energy and market prices for day D.  
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To better handle this challenge, the market operator (MO) runs several sessions 
of the IDM. In each session, the agents are allowed to buy/sell energy in order to 
adjust their acquired commitments in DAM through a bidding process. These IDM 
sessions are run closer to the time of actual delivery of energy by the agents so a 
less uncertain information is supposed to be available for the agents. The first 
session of the IDM for day D ends in late evening of day D-1 with a time span 
including the entire day D. Although several IDM sessions are run afterward to let 
even further adjustment, only the first session will be considered in this work. The 
final commitment of the power agent will be the added commitments in both the 
DAM and IDM. The existence of DAM and IDM results in the possibility to have 
two prices for the same amount of energy sold in the same hour. This is the base 
for the market-based arbitrage strategy that an agent may exploit. Due to the 
existence of storage capacity in the W&SPP, a time-based arbitrage strategy may 
also be investigated i.e., to buy/store energy when energy has low price and 
sell/discharge energy when energy has a high price. Also, both arbitrages may be 
combined to look for the biggest gap in price for both the DAM and IDM. 
Lastly, in every hour of day D, a real-time balancing market is run to handle the 
deviations between the commitments in DAM and IDM and the actual delivery of 
energy in real time. This BM will determine the price of the deviation upwards and 
deviation downwards of the power agent with respect to what it was committed 
in DAM and IDM. The decision-making process for the participation in the energy 
pool market is shown in Figure 38. In this figure, it can be seen that the 
participation of the agent in the DAM is decided in the first place. Later, the agent 
may participate in the IDM to correct the commitments acquired in the DAM. 
Lastly, in real time, the agent participates in the BM to buy/sell energy that 
compensates the deviations with respect to the commitments acquired by the 
DAM and IDM. 
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Figure 38. Pool market mechanism 
 

6.3 Model Description 
 
In this section, the proposed mathematical model to optimize the participation of 
the W&SPP in the pool market is discussed. First, a price-taker assumption is 
made, meaning that the agent is not able to influence the market price. When 
decisions to participate in DAM and IDM are to be made, several uncertainties 
make this decision problem challenging. These uncertainties are modeled as 
random variables. For instance, pool market price and available wind energy in 
day D are considered as random variables. To handle this uncertainty, a two-stage 
stochastic approach is proposed. Under the stochastic approach, uncertainty is 
modeled by defining scenarios which represent several realizations of the random 
variables. A two-stage stochastic problem considers two kinds of variables: first 
stage and second stage variables. First stage variables are associated with 
decisions to be made before random variables take values and second stage 
variables are associated with decisions to be made depending on the first stage 
decisions and realizations of random variables (i.e., depending on the considered 
scenarios). Thus, the two-stage stochastic problem aims to find an optimal 
solution which includes the first stage decisions to be made in day D-1 and the 
second stage decisions to be made after random variables take values in day D. 
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Decisions associated with the participation of W&SPP in DAM and IDM will be 
considered as first stage variables in our model as shown in Figure 38. The 
operation of the ESS is considered as a first stage decision as well. All these 
decisions are made in day D-1. For all considered scenarios, random variables 
become input data. Participation of the W&SPP in the BM is modeled as scenario 
dependent second stage variables. 
 
The following notation will be used to formulate the proposed model: 
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Nomenclature 
 
Sets and Subindex: 
S  Set of Scenarios. 
T Set of time slots. 
s Subindex for scenarios, s = 1, …., 
Ns. 
t Subindex for time slot, t = 1,….., T
  
Parameters 
 

T  Number of periods under 
consideration . 

windP  Rated power of the wind farm 

(MW). 

0

essE  Initial energy stored in the ESS 

(MWh). 

in  Charging efficiency of the ESS. 

out  Discharging efficiency of the ESS

  
essE  Maximum energy stored in the ESS 

(MWh). 
essP  Maximum power to/from ESS 

(MW). 
min

tSOC Minimum state of charge of ESS. 

bm  Correction factor of deviation 

prices in BM. 

s  Probability of scenario s 

Ns Number of scenarios 
 
Random variables 
 

,
,dam dam

t s t
   Energy price in the DAM 

(€/MWh). 

,
,idm idm

t s t
   Energy price in the IDM 

(€/MWh). 
, ,

,
ˆ ˆ,bm up bm up

t s t
   Energy price of deviation 

up (€/MWh). 

 
, ,

,
ˆ ˆ,bm dw bm dw

t s t
   Energy price of deviation 

down (€/MWh). 
, ,

,
,bm up bm up

t s t
   Corrected price of 

deviation up (€/MWh). 
, ,

,
,bm dw bm dw

t s t
   Corrected price of 

deviation down 
(€/MWh). 

, ,, , ,t s t t s t    Auxiliary parameters for 

the convex model. 
 

,
ˆ ˆ,wind wind

t s tP P  Wind power available 

(MW). 
 
Decision Variables 
 

,

wind

s tP  Wind power actually used (MW). 

ess

tE  Energy stored in the ESS (MWh). 

,ess in

tP  Power entering the ESS (MW). 

,ess out

tP  Power delivered by the ESS (MW). 

tSOC  State of charge of ESS in time t. 

,s tP  Power to/from W&SPP in time t 

(MW). 

ˆ dam

tP  Power committed in the DAM 

(MW). 

ˆ idm

tP  Power committed in the IDM 

(MW). 

ˆ pm

tP  Power committed in the PM (MW). 

,

pm

s tP  Power actually delivered/taken in 

the PM (MW). 

,

pm

s t  Unbalance in PM (MW)
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The following equation (87) states a generic objective function of a two-stage 
stochastic programming problem: 
 

 ( ) ( , , )minimize f X g X Y         (87) 

       
In the equation (87), X  is the set of first stage variables, which are not scenario 
dependent variables. This means that decision concerning these variables are 
made before the information about uncertain parameters is revealed. In this 
problem, commitments in the DAM and IDM, and operating variables of the ESS 
are considered as first-stage variables. The decision variables showed in the 
nomenclature with only “t” in the subindex belongs to the set of first stage 
variables. On the other hand, Y  is the set of second stage variables, which are 
scenario dependent variables. These variables take different values depending on 
the considered scenario. These decisions variables include both “t” and “s” as 

subindex in the nomenclature. Lastly,   is the set of random variable and the 

operator   computes the expected value of function g.  
In the following subsections 6.3.1 and 6.3.2, we will describe our proposed model, 
which proposes a convex two-stage stochastic model to optimize the participation 
of a W&SPP in the pool market. 
 

6.3.1 Objective Function 
 
The objective of the decision-making problem is to maximize the net income of 
the operation of W&SPP participating in DAM, IDM, and BM. The objective 
function is defined by the equation (88). All markets considered in this paper run 
on an hourly basis. Therefore, it is equivalent to consider sell/buy energy or 
power. 
 

  , ,

1 1 1

ˆ ˆ
T T T

dam dam idm idm bm up up bm dw dw

t t t t t t t t

t t t

maximize P P   
  

          

         (88) 
 
The first term in equation (88) accounts for the net income for participating in 
DAM and IDM while the second and third terms account for the implications of 
deviation with respect to the commitments acquired in day D-1. These deviations 
are handled by buying/selling energy in the BM. All the prices in this equation are 
not actually known and thus modeled as random variables. 
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The above objective function can be equivalently reformulated as a minimization 
problem as follows, as to equation (89), to better implement the solution process:  
 

 
1

, ,

1 1

ˆ ˆ
T

dam dam idm idm

t t t t

t

T T
bm up up bm dw dw

t t t t

t t

minimize P P 

 



 

    

  



 
  (89) 

   
Some variables are defined using equations (90)-(93) to use a convex function to 
model the participation in BM [37]. These variables avoid the use of binary 
variables. Thus, the equation (90) defines the deviation in the energy market with 
respect to the commitments acquired in day D-1, which are defined in the 
equation (91). Equations (92) and, (93) define the deviations up and down in the 
energy market by using convex functions. 
 

ˆpm pm pm

t t tP P          (90) 

          
ˆ ˆ ˆpm dam idm

t t tP P P         (91) 

         

 max ;0up pm pm

t t t



      
      (92) 

        

 max ;0dw pm pm

t t t



      
      (93) 

        
As a result, objective function can be written as follows: 
 

 
1

, ,

1 1

ˆ ˆ
T

dam dam idm idm

t t t t

t

T T
bm up pm bm dw pm

t t t t

t t

minimize P P 

 



 

 

    

          



 
  (94)  

 
Equation (94) may be rewritten as equation (95) to make it more convenient for 
convex optimization solvers, as explained in chapter 4. 
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 
1 1 1

ˆ ˆ
T T T

dam dam idm idm pm pm

t t t t t t t t

t t t

minimize P P   
  

           (95)

    
Where, 
 

, ,

2

bm dw bm up

t t
t

 



        (96) 

         
, ,

2

bm dw bm up

t t
t

 



        (97) 

          
Just remember that equation (95) will be a convex function as long as condition 
(98) holds. Interestingly, it is always the case in the spanish market [49]. 
 

, ,bm dw bm up

t t 
       (98) 

 
As we mentioned earlier, the energy price for all markets and available wind 
energy are considered as random variables. To model these random variables, a 
set of scenarios with an associated probability of occurrence needs to be defined. 
Thus, customizing equation (87) according to our problem, we obtain the 
objective function (99) of a two-stage stochastic problem as follows:  
 

 , ,

1 1

, , , ,

1 1

ˆ ˆ(

)

Ns T
dam dam idm idm

s s t t s t t

s t

T T
em em

s t s t s t s t

t t

minimize P P  

 

 

 

     

   

 

 
  (99) 

 
In the equation (99), random variables become actual parameters for every 
considered scenario. Likewise, it is straightforward to define equations (100), 
(101) and (102) from equations (90), (96) and, (97). 
 

, ,
ˆpm pm pm

s t s t tP P          (100) 

 
, ,

, ,

,
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bm dw bm up

s t s t

s t

 



        (101) 
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,
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bm dw bm up

s t s t
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 



        (102) 

 

6.3.2 Constraints 
 
The following set of additional constraints define the feasible set for the proposed 
stochastic optimization problem. The set of constraints (103)-(112) define the 
operation of the W&SPP, while the constraints (113)-(115) deal with the 
participation in the pool market. 
Constraint (103) sets the energy stored in the ESS in every time step as a function 
of the initial condition, the power entering and leaving the ESS and, the efficiency 
of charging and discharging process. 
 

,t T s S     
 

, ,

0

1 1

1t t
ess ess ess in ess out

t in

out

E E P P 
 


 

         (103) 

 
Constraint (104) limits the wind power to the available capacity in every 
considered scenario. The right-hand side of this constraint is one of the random 
variables modeled through scenarios. 
 

, ,
ˆwind wind

s t s tP P          (104) 

 
Also related with the ESS, constraint (105) requires to have the same energy 
stored at the beginning and at the end of the period under study (one day in our 
case); constraints (106), (107) and (108) limit the maximum and minimum energy 
stored in the ESS. Constraints (109) and (110) limit the power leaving/entering the 
ESS in every hour. 
 

0

ess ess

TE E          (105) 

 
ess ess

tE E          (106) 

 

/ess ess

t tSOC E E        (107) 
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min

t tSOC SOC         (108) 

 
,ˆ ess out ess

tP P         (109) 

 
,ˆ ess in ess

tP P         (110) 

 
Constraint (111) defines the power balance in the W&SPP and constraint (112) 
sets some nonnegative restrictions. 
 

, ,

, ,

wind ess out ess in

s t s t t tP P P P         (111) 

 
, ,; ; 0ess out ess in ess

t t tP P E        (112) 

 
As to the pool market constraints, constraint (113) limits the maximum power that 
can be bought/sold in DAM while constraint (114) does the same for IDM. It is to 
note that limits in the IDM are wider to allow to fully correct previous decisions 
concerning DAM commitments. Lastly, constraint (115) sets the relationship 
between the power exchange by the W&SPP and the power market. 
 

ˆess dam wind ess

tP P P P               (113)

ˆ idm wind ess

tP P P              (114) 

, ,

pm

s t s tP P         (115) 

 

6.4 Scenario Generation Methods 
 
In this section, the proposed methods used to generate scenarios for both 
available wind energy and energy price are discussed. Available wind energy and 
energy price are not known when decisions concerning the participation in the 
pool market are to be made. Here, a set of wind energy scenarios is derived from 
the forecast data obtained from [106]. On the other hand, a set of scenarios for 
market price is derived from historical data by using machine learning techniques. 
Firstly, a multivariate clustering technique is proposed to find patterns of market 
price that can be considered as scenarios. Although clustering techniques has 
been used as a scenario reduction technique in the literature, its pattern 
identification capability has not been leveraged yet as a scenario generation 
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approach. In this work, at first, a frequentist approach which only considers how 
often each pattern appears in the dataset is proposed to assign a probability of 
occurrence to each scenario. Then a novel Bayesian approach is proposed. Using 
an LSTM Recurrent Neural Network, information is extracted from the sequence 
of patterns that occurred during the days before day D-1. In other words, the 
probability of each scenario is calculated depending on the sequence of actual 
prices in the previous days. This approach is promising in the sense that it gets 
information not only from the pattern of price themselves but also from the 
temporal sequence in which they occur. 
 

6.4.1 Wind Energy Scenario 
 
The approach to handle the uncertainty in available wind energy is the same as in 
chapter 5. Thus, the available wind energy forecast is provided by the WF operator 
and scenarios are generated from the available data as explained in section 
5.3.1.1. 

 

6.4.2 Energy Market Price Scenario 
 
We consider one-year historical data of daily energy price for all the markets to 
extract information to generate scenarios to be fed into the stochastic 
optimization model. To generate scenarios for the energy market price, we have 
proposed the following two approaches:  
 

a. Static approach: In this approach, a clustering technique is applied as 
explained in subsection 6.4.2.1 to define a set of scenarios. 
Probability of occurrence of each scenario is calculated based on a 
frequentist reasoning. The probability is calculated from the 
clustering procedure by taking into account the number of elements 
in each cluster. We consider this approach as a static scenario 
generation approach as both clustering/scenario definition and 
assigned probabilities do not change if the historical dataset remains 
the same. The frequentist reasoning process is briefly explained in 
subsection 6.4.2.2.1. 

 
b. Dynamic approach: In this approach, scenario set is also defined by 

the clustering technique explained in subsection 6.4.2.1. However, 
probability of occurence of each scenario is calculated based on a 
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Figure 39.- Scenario generation approaches for energy price 
 

bayesian reasoning. Information associated with the temporal 
sequence of events is used to update the probability of each scenario 
on a daily basis. The detail process of probability calculation is 
described in subsection 6.4.2.2.2. Unlikewise the frequentist 
reasoning explained above, this approach can be seen as a dynamic 
approach as the probability of occurrence of the scenarios are 
updated every day during the simulation process. 

 
To set a base case, a random approach is also considered to compare the 
performance of the proposed approaches. A set of data points is randomly chosen 
from the dataset and defined as scenarios. In order to assign probabilities to these 
scenarios, an assumption of equiprobability is made. The relationships among 
approaches to defining scenarios and assignment of probabilities of occurrence 
to them are shown in the following Figure 39. 
 
. 
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Centroid_1

Numel_1

Scenario 1

…………………….Cluster 2
Centroid_2

Numel_2

Scenario 2

Cluster Nscen
Centroid_Nscen

Numel_Nscen

Scenario_Ns

* Numel = number of elements in the corresponding cluster.

Figure 40.- Clustering-based scenario generation. 
 

6.4.2.1 Clustering-Based Scenario Generation.  
 
The scenario generation process will follow a multidimensional data-driven 
approach by using historical data of daily energy price for the considered power 
markets: DAM, IDM, and BM. Therefore, the data set is made of arrays of 96 
elements as shown in Figure 40. 
Each array is constructed by concatenating the hourly prices for one day and for 
each market. Hence, a scenario generation procedure involves finding 
representative points of the whole dataset. This may be seen as a scenario 
reduction technique from the original dataset defined by the historical data. One 
popular approach to performing this scenario reduction is by using clustering 
techniques [87], which are defined as an unsupervised learning task because no 
labeled data is available. These clustering techniques aim at finding a discrete 
distribution with smaller support than the original one minimizing a probabilistic 
distance between them.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
In particular, in this case, a k-means algorithm is proposed to generate scenarios 
out of the available historical price data. 
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In our case, the original dataset is made up of one year of daily prices arrays. Each 
of these arrays is made of 96 elements, corresponding to the hourly prices of 
energy in DAM, IDM, deviation upwards, and deviation downwards in BM. Using 
the clustering technique, the whole data set will be divided into a set of clusters. 
Each of these clusters is defined with a centroid and a set of points assigned for 
each cluster. These centroids will become the considered scenarios for the 
stochastic problem.  

 

6.4.2.2 Probability of occurrence 
 
As we mentioned earlier, once the scenario set has been generated, the 
probability of occurrence for each scenario must be assigned. We will consider 
two approaches to calculate the probability of occurrence as follows: 
 

6.4.2.2.1 Frequentist Reasoning 
 
The probability of occurrence can be calculated from the clustering procedure 
itself using a frequentist reasoning. It means that the probability of occurrence of 
each scenario depends on the number of data points assigned to each 
cluster/scenario. Thus, by computing the ratio between the number of data points 
assigned to each cluster and the total amount of points in the dataset, the 
probability of occurrence can be defined.  
 

6.4.2.2.2 Bayesian Reasoning 
 
One step forward to feed meaningful data to the stochastic problem is to update 
the probability of occurrence for each scenario when new information is available. 
Therefore, a Bayesian reasoning-based approach is proposed in this paper to take 
into account the most recent event.  
To implement this idea, a hybrid unsupervised-supervised machine learning 
framework is proposed. It aims at extracting more information from the dataset. 
As we said earlier, one year of daily price data is available and a clustering 
approach is carried out to define scenarios. Once the clustering is performed, a 
sequence of daily patterns can be drawn. Then it is possible to compute the 
probability of occurrence of each scenario in the sequence given what happened 
in the previous days.  
At first, it is needed to build a labeled data set from the available data that may 
be used in the supervised learning step of our framework. As explained in 
subsection 6.4.2.1, the historical price data available is rearranged as a set of 365 
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1 2
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Clustering
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................................ ........

1 2 LB 2LB

d d LB...... 2d LB 

Labeled dataset

LSTM-RNN 

MCC

Training

Supervised learning

......

LSTM-RNN 

MCC

Predicting

...
...

...
...

Figure 41.- Definition of labeled dataset to train the LSTM-RNN MCC. 

arrays of daily prices. Each of these arrays is assigned to one of the defined 
clusters. As a result, a sequence of daily price patterns/classes is obtained. This 

idea is shown in Figure 41. In this figure, d  denotes the cluster assigned to the 

daily price array of day D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Once the daily price and corresponding daily price patterns are computed, it is 
possible to generate the labeled dataset. To do that, the actual decision process 
must be kept in mind. Our goal is to forecast the probability of occurrence of each 
scenario for day D when decisions are to be made in day D-1. At that time, the 
decision maker only knows the actual data from day D-2 backward. A look-back 
(LB) period is defined as the number of days that the decision maker will look 
backward to forecast the future. With this time framework in mind, the labeled 
dataset can be generated. 
With this new labeled dataset, supervised machine learning techniques can be 
used. In particular, a recurrent neural network-based multiclass classifier is 
proposed in this chapter. Recurrent Neural Networks (RNNs) are a kind of neural 
network well suited to perform learning and prediction tasks over sequences of 
data. This sequence may be a text, a video or a time series of data. This kind of 
neural network outperforms the traditional feedforward neural network for these 
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tasks due to its ability to handle the sequence of information in the input data 
[107]. The main limitation of RNN is the so-called vanishing-exploding gradient 
problem which makes it difficult the process of training [84]. During the training 
procedure, the backpropagation algorithm is used to update the weights and bias 
of the cells. This algorithm set a way to compute the gradient of the error in each 
cell and update the weight and bias accordingly. When facing long sequences, the 
gradient tends to become very large, explodes, or very small, vanishes, which is a 
major drawback for the training of the RNN. To overcome this problem, an 
evolution of the RNN called Long Short-Term Memory Recurrent Neural Network 
(LSTM-RNN) has been proposed [35]. In this neural networks, the cell becomes 
more complicated in order to provide the cells with the ability to decide which 
information from the previous steps in the sequence should be kept or deleted.  
Usually, the objective of a neural network is to provide a deterministic forecast of 
the desired output, given some input data. However, sometimes, a deterministic 
forecast from a Neural Network is not the most desirable output [108]. Instead, 
the goal of a neural network is to assign the input sequence to any of the classes 
defined previously. This kind of neural network is also called multiclass classifiers 
and the neural network may include an output layer called a softmax layer to 
assign the probability of belonging to any of the defined classes [109].  
In this work, we proposed to tie together the capability of extracting information 
from a sequence of an LSTM-RNN and the capability of providing a probabilistic 
classification of the multiclass classifiers. To do so, a set of target classes should 
be defined in advance. In our case, we obtain these target classes by applying a 
clustering algorithm to the available dataset. Our proposed LSTM based multiclass 
classifier (LSTM-MCC) is described in the following Figure 42. Training of the 
LSTM-MCC is performed by using the labeled dataset built above. Once the 
training is finished and the parameters of the LSTM-MCC are computed, we can 
predict the probability of occurrence for each scenario. During D-1, price vectors 
for the LB period are fed into the LSTM-MCC and the array of probability for every 
cluster/scenario is updated.  
 

6.5 Simulation and Result 
 
The objective of this simulation is threefold. First, it evaluates several approaches 
to generate scenarios and handle the uncertainty linked to energy price. Second, 
it evaluates the impact of adding storage capacity to a wind farm to participate in 
the pool market and the impact of participating in the IDM. Lastly, it evaluates the 
quality of the stochastic solutions by comparison with a perfect information 
hypothesis. 
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Figure 42.- Dynamic approach to update the probability of occurrence for each 
scenario. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Data associated with market prices is downloaded from the website of the Spanish 
system operator where this data is publicly available. The historical dataset is 
made of 365 daily price vectors corresponding to one year of data. Both clustering 
and construction of training set for the LSTM-MCC are performed using this 
historical data set. Several software and libraries are used for the implementation 
of the proposed methods. All of them are shown in the following  
Table 8. This case study focuses on a wind farm located in Northwestern Spain 
with an installed generation capacity of 15 MW [2]. A sensitivity analysis is made 
by considering several ESS. Simulations are run over 60 days and the aggregated 
net income is calculated.  
All the simulations are run on a PC with an Intel Core i7-5500U processor at 2.40 
GHz and 8 GB of RAM. The time needed for running a 60 days case considering 30 
scenarios (3 scenarios for available wind energy and 10 scenarios for the market 
price) is about 300 seconds. 
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Table 8. Software and libraries used in this work. 
 

Software / Library Description Application  

CVX – MATLAB [50] Convex optimization 
problem modelling. 

Implementation of the 
stochastic convex 
problem. 

GUROBI Solver for convex 
optimization problems. 

Solve optimization 
problem. 

SCIKIT-LEARN  Python-based machine 
learning library. 

Clustering. Scenario 
definition. 

KERAS – TENSORFLOW  Python-based library 
for deep learning. 

Implementation, training 
and prediction of the 
LSTM-MCC. 

 
 

6.5.1 Scenario Generation 
 
In section 6.4, two approaches were presented to generate scenarios to be fed 
into the stochastic model. Both methods rely on a multivariate k-means clustering 
algorithm to define several clusters from daily price vectors. The centroids of 
these clusters will be considered as the market price scenarios. One year of daily 
price for DAM, IDM, and BM in the Spanish pool market are considered in this 
work. It means that the historical dataset is made up of 365 arrays of 96 elements. 
It is to note that the Spanish market follows the market structure presented in 
chapter 2. When analyzing the market prices in all the markets of the pool, it often 

happens that either 
,bm dw dam

t t   or 
,bm up dam

t t  . It means that there is not 

an actual penalty if the generators deviate from the commitments acquired in the 
DAM and IDM. 

In this work, a parameter  0,1bm   is defined to model a case where there is 

always a penalty if participating in the BM as stated in equations (116) and (117). 
Including this modification, the additional energy delivered in real time by the 
W&SPP are always paid at a lower price compared to the price resulting from the 
DAM. In fact, this is a penalty for the agent in the sense that if the agent has 
offered the same energy in advance would have gotten more money. A similar 
analogy is used for all other deviation cases.  
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Figure 43.- Scenarios for daily market prices. 

Here, the original data for balancing market prices is modified by considering 

0.2bm  . 
Of course, different markets would have different behaviour associated with the 
market price. The decision framework developed in this work would be 
completely replicable in other markets. 

, ,ˆ 1bm up bm up

t t

dambm

t   
 

    
 

     (116) 

 , ,ˆ 1bm dw bm dw

t t

bm dam

t            (117) 

The number of scenarios to be generated should represent the original dataset 
while being as small as possible to keep the stochastic problem tractable. To this 
aim, previous knowledge of which properties of the data should be highlighted by 
the scenarios are useful. In our case, scenarios are meant to capture two 
important features in the dataset. In one hand, scenarios should represent 
different levels of price, i.e., scenarios of high, medium and low prices. On the 
other hand, the scenarios should also capture different daily profiles of price, i.e, 
the gap between highest and lowest prices in one day. 
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Figure 44.- Sequence of daily price patterns from historical dataset. 

With this in mind, ten scenarios are found to provide a good representation of the 
historical dataset as shown in Figure 43. 
Thus, for example, scenario 1 and scenario 5 represent profiles of the small 
difference between peak and valley prices with scenario 1 accounting for higher 
prices during the whole day. By contrast, scenario 4 and scenario 10 both have a 
similar price profile characterized by the high difference between peak and valley 
prices but scenario 10 shows lower prices during the whole day. 
The next step, after the clusters have been identified and the scenarios have been 
defined, is to assign a probability of occurrence for each of those scenarios. It is 
in this point where the differences between the static and the dynamic 
approaches arise. In the static approach, the probability of occurrence of each 
scenario is calculated while the clustering itself. This calculation is based on the 
number of elements in each cluster. This probability of occurrence will remain the 
same every day of the simulation process as it can be seen in Figure 45. 
In the dynamic approach, the probability of occurrence of each scenario is 
updated every day based on recent price events as shown in Figure 45 (upper). 
This is performed by an LSTM-based MCC which is trained with one-year data.  
In Figure 44, the sequence of daily price patterns is represented. This sequence is 
built by assigning the price array of a given day to its corresponding cluster.  
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Figure 45.- Probability of ocurrence for scenarios under dynamic (upper) and 
 static (bottom) approaches during 30 consecutive days. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.5.2 Result 
 
In this subsection, at first, we will evaluate the proposed approaches for scenario 
generation. Second, we will compare the net achievable income participating in 
the DAM and IDM with the net income achievable by just participating in the DAM. 
This is helpful to evaluate the market-based arbitrage strategy. In parallel, we will 
carry out a sensitivity analysis to evaluate the impact of the size of energy storage 
systems on the net income of the proposed W&SPP which is helpful to evaluate 
the time-based arbitrage strategy. 
Thus, the net income of the W&SPP is evaluated during a simulation span of two 
months. On one hand, an upper bound on the achievable net income is calculated 
under perfect information hypothesis (PI). Under this assumption, energy prices 
in all considered markets and available wind energy in day D are supposed to be 
known when the optimization problem is solved in day D-1. On the other hand, 
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simulation considering perfect information only for market price and only for 
available wind energy are also performed. This is useful to evaluate the marginal 
influence of the uncertainty affecting a single parameter. 
When considering real information (RI) associated with the energy price, one 
more approach is evaluated. This approach is a random approach which may be 
used as a base case. In this case, ten actual price vectors are chosen out of the 
whole dataset. This set of random vectors is updated every day during the 
simulation span. Because of the random nature of this problem, this case is run 
several times to evaluate the range of achievable net income. The achievable net 
income is shown in Table 9. Net Income (€) participating in DAM, IDM, and BM for 
a simulation of 2 months. for several sizes of ESS. Furthermore, to show the 
effectiveness of the proposed two-stage stochastic approach, two deterministic 
cases are also considered. In both cases, the scenarios resulting from the static 
approach in section 6.5.1 are averaged, with their corresponding probability of 
occurrence to get one meaningful scenario to be considered in the deterministic 
case. As to the available wind energy, an optimistic and a conservative forecast 
are considered. 
The main objective of the simulation experiment is to evaluate the proposed 
scenario generation approaches. As it can be seen, the dynamic approach 
outperforms the static and random approaches no matter the size of the ESS 
considered, including the no-storage case. This is not surprising because more 
information from the dataset is extracted under Bayesian framework through the 
utilization of LSTM-RNN and MCC. More specifically, sequence information is also 
extracted out of the dataset. Although the proposed dynamic approach offers the 
best performance among all the approaches, there is still room for improvements 
with respect to the perfect information case. 
From Table 9, two more interesting insights may be extracted. In one hand, net 
income slightly increases as we add ESS. For example, the net income increases 
3.2% when adding a 2MW/2MWh ESS under PI hypothesis, whereas the net 
income increases only 1.7% with the dynamic approach for the case with RI. As it 
was stated above, the addition of an ESS is justified by a time-based arbitrage 
strategy that may allow a wind farm to take advantage of the gap between peak 
and valley market prices.  
On the other hand, it also can be observed that the cost of uncertainty in terms 
of losses of net income with respect to the PI hypothesis is similar when marginal 
uncertainty in available wind energy or pool market price is considered. As an 
example, for the no-storage case, the cost of the uncertainty in available wind 
energy is 7.2 % with respect to the perfect information hypothesis. If just the 
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uncertainty in market prices is considered, this percentage decreases, thus being 
a 6.1%.  
 
Table 9. Net Income (€) participating in DAM, IDM, and BM for a simulation of 2 

months. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To evaluate the importance of market-based arbitrage strategy, a simulation is 
run only considering the DAM and BM. As to the input, only perfect information 
hypothesis and dynamic approach are considered. These cases are enough to 
conclude some meaningful insights. The achievable net income is shown in Table 
10. 
In the following Figure 46, simulation results for a no-storage case and a 2 
MW/MWh case are shown. 
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NET INCOME (€) - DayAhead & Balancing Markets

Uncertainty Case ESS 

Available Wind Energy Market Prices NO STORAGE 1 MW / 1 MWh 2 MW / 2 MWh 5 MW / 5 MWh

PI PI 262563 263845 265046 268260

RI DYNAMIC 229906 230797 231689 233857

Table 10.- Net Income (€) participating in DAM and BM for a simulation of 2 months 

Figure 46.- Influence of uncertainty and ESS capacity in net income. 
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Figure 47.- Impact of participation in IDM. Perfect Information and Dynamic 
Approach cases. 

 

As we stated earlier, time-based arbitrage relies on the price difference among 
hours to gain a profit. For a VRRG, the only way of taking advantage of this kind of 
arbitrage is to have storage capability. Thus, in Table 9 and Table 10, it is possible 
to evaluate the benefits of time-based arbitrage by looking at each raw. In Table 
9, for instance, it is shown that, under PI hypothesis, the fact of adding a 1 
MW/1MWh ESS, only increases the net income by 1.6%. If the W&SPP is only 
allowed to participate in the DAM and BM, this increase is only 0.5%. Thus, 
although the time-based arbitrage is more profitable if participation in IDM is 
allowed, it seems that net income increase is not enough to justify the investment 
in ESS. 
Conversely, if a market-based arbitrage is considered, more interesting results are 
observed. Under PI hypothesis and with no storage, the net income increases by 
12%. In a more realistic setting, considering the proposed dynamic approach, the 
net income increases by 6.2% as shown in Figure 47. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.6 Conclusion 
 
A two-stage stochastic convex program is proposed to model the decision-making 
problem under uncertainty of a W&SPP participating in the pool market. On one 
hand, several approaches are proposed to generate scenarios to quantify the 
uncertainty in market price. The dynamic approach based on an LSTM-MCC shows 
the best performance in terms of achievable net income. This is due to its ability 
to extract influential scenarios considering both price patterns, through the 
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utilization of multivariate clustering techniques, and the sequence of patterns by 
using an LSTM recurrent neural network. Uncertainty in available wind energy is 
also considered. A marginal analysis shows that both uncertainties, available wind 
energy and market price, have a similar effect on the achievable net income under 
PI hypothesis. 
On another hand, simulation results also have revealed interesting insights about 
the participation of a W&SPP in the pool market. A time-based arbitrage strategy 
does not seem feasible from an economic point of view. The increase in the net 
income with this strategy is small and does not seem enough to justify an 
investment on the necessary ESS. Conversely, it is interesting to exploit a market-
based arbitrage strategy. Under this strategy, the W&SPP operator may decide in 
which market is more profitable to buy or sell energy. Therefore, the proposed 
robust decision-making framework could be used by the W&SPP managers to gain 
competitive advantage from the energy pool market. In the future, we could 
extend our approach to apply in other decision-making problems which require 
to quantify uncertainty as well. Furthermore, the power market is a sequential 
process, which requires to develop dynamic decision tools. We could explore the 
opportunity to use our proposed scenario generation techniques in a Model 
Predictive Control framework to develop a dynamic decision-making tool. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 

CHAPTER 7 
 
 
 

7 Summary, conclusions and 
future work. 
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7.1 Summary 
 
During this thesis, we have dealt with the decision-making problem of a 
renewable energy based generator participating in the electricity markets. More 
specifically, a wind farm with storage capabilities was studied. Firstly, the idea of 
an optimization problem, from a mathematical point of view, was introduced as a 
framework to model decision-making problems, and machine learning techniques 
were also presented as a way to generate meaningful input data to the 
aforementioned problem. Once the tools to handle the decision-making problem 
were introduced, several problems were treated more specifically. First, a 
deterministic model of a wind and storage power plant participating in day-ahead 
and reserve markets was developed. The deterministic model was used to 
evaluate how much does it cost to not accurately know the input data of the 
problem. Secondly, a stochastic approach is proposed to handle the uncertainty 
in the input data of the same problem. In particular, a two-stage stochastic 
program is used to model the decision-making problem. Several methods were 
proposed to define scenarios which can model the uncertainty related to available 
wind energy and regulation requirements. For example, deterministic forecasting 
of regulation requirements and multivariate clustering of actual daily data were 
analyzed. Lastly, the participation of the W&SPP in the pool market is considered. 
In this case, uncertainty in market prices is also handled and a two-stage 
stochastic program is proposed. A scenario definition framework, based on 
supervised and unsupervised learning techniques was proposed and validated. 
 

7.2 Conclusions 
 
At the decision-making framework level, some conclusions are extracted out of 
this work. Firstly, that a stochastic approach outperforms the deterministic one in 
an uncertain environment when the decision problem is solved in a repeated way.  
Secondly, that leveraging machine learning techniques to define the scenarios 
modeling the uncertain data seems a promising field when dealing with extracting 
information out of available data. 
During this thesis, three sources of uncertainty were considered: available wind 
energy, regulation requirements, and market prices. 
In the first case, it is shown that the influence of uncertainty in available wind 
energy has an important impact on the achievable net income of the W&SPP 
when participating in the electricity markets. To model that uncertainty, the 
hypothesis with different levels of conservatism are made to define scenarios. The 
results showed that an excess of conservatism penalizes the result but, even in 
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that case, the net income achievable is better than using a deterministic forecast 
of the available wind energy. 
In the second place, the regulation requirements from SO is also considered an 
uncertain parameter in this work, and several proposals are made and evaluated 
to model such uncertainty. Both a multivariate clustering and a more simple look-
back approach outperform both neural network based forecast and univariate 
clustering approaches. The simulation showed that the margin for improvement, 
by comparison with the perfect information hypothesis, is small if the more 
successful strategies for generating scenarios are used.  
Finally, as to the price uncertainty in the pool market, the multiclass classifier 
based on pattern definition through a multivariate clustering plus an LSTM neural 
network to extract information out of the temporal sequence of such patterns 
shows promising results.  
As to the optimization problem of a W&SPP participating in the electricity 
markets, it is shown that the presence of an energy storage system does not add 
significant value when the W&SPP is only allowed to participate in DAM. On 
another hand, if the W&SPP is allowed to participate in the RM, the net income 
increases significantly. Likewise, the participation in the pool market is also an 
efficient way of increasing the net income of a W&SPP. In this case, the added 
value comes from the availability to follow a market-based arbitrage strategy, in 
which, the operator may decide to buy/sell energy not just at the time when it is 
cheaper but also by participating in the most interesting market. 
 

7.3 Future work 
 
 
Data-driven decision frameworks have a huge potential for further development 
thus helping to accomplish the challenges that power systems are facing. From 
our point of view, further research should be undertaken in the following issues: 
Firstly, and given the time structure of the electricity markets, longer periods 
should be considered for the optimization of the participation in the markets. 
With this idea, multistage approaches fit the decision-making problem quite well. 
In this case, how to define scenario trees that can model the growing uncertainty 
when the time span of the problem increases becomes of paramount importance.  
Data-driven approaches, based on machine learning techniques, also showed 
their potential to generate meaningful input data to decision-making problems. It 
is also important to explore and compare, for example, different clustering 
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algorithms and more complex neural networks structures that can extract out of 
the available data as much information as possible. 
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